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Distribution Shifts on Graph Data
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Graph data from multiple domains Dynamic temporal networks

 Distribution shifts cause different data distributions
 New data from unknown distribution are unseen by training
 Distribution shifts involve structural information of non-Euclidean data



 Out-of-distribution data are ubiquitous in real-world situations
 ML systems are difficult to generalize to new test distributions
 Unlike images, OOD samples are ambigous for graph-structured data

Distribution Shifts on Graphs
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Out-of-distribution samples can be clearly 
defined for image data OOD samples?



Challenges of Graph Data Modeling 
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each instance is drawed from the same 
data distribution independently (i.i.d.)

instances have inter-connection and cannot 
be treated as i.i.d. samples



 How to deal with the non-IID nature of nodes in a graph?

 Graph notation: A graph                    , adjacency matrix                              
node features                            , node labels

    where     denotes environment (that affects data generation)

Problem Formulation
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Decompose a graph into pieces 
of ego-graphs



 Out-of-distribution generalization on graphs:

 Graph notation: A graph                    , adjacency matrix                              
node features                            , node labels

    where     denotes environment (that affects data generation)

Problem Formulation
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• A graph      can be divided into pieces of ego-graphs
• The data generation process: 1) the entire graph is generated via                        ,
    2) each node's label is generated via 
• Denote      as the support of env. and            as the loss function 

sample node-level label conditioned 
on ego-graph and environment

loss function for 
node-level prediction

sample a whole graph from 
a specific environment

learn a classifier 
robust for worst case



Causal Invariance Principle
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Assumption 1 (Invariance Property) 
There exists a sequence of (non-linear) functions              where                        and a permutation-
invariant function                        , which gives a node-level readout                 that is calculated in a 
recursive way:                                                      for                      and                       if               . Denote  
   as a random variable of      and it satisfies 
 Invariance condition: 
 Sufficiency condition:                          , where     is a non-linear function,     is a random noise. 

Intuitive Explanation: 
There exists a portion of causal 
information within input ego-graph for 
prediction task of each individual node

The “causal” means two-fold properties:
   1) invariant across environments
   2) sufficient for prediction 

causal features

non-causal features

inspired by Weisfeiler-Lehman test 



We consider a linear 2-dim toy example and 1-layer GNN model

Motivating Example 
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Data generation:  2-dim node features                         and node label

where      and      are standard normal noise and     is a random variable with zero 
mean and non-zero variance dependent on the environment.
Model: a vanilla GCN as the predictor model:

The ideal solution is

causal features non-causal (spurious) features

example for 
citation network



Motivating Example (Cont.) 
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Proposition 1 (Failure of Empirical Risk Minimization) 
Let the risk under environment      be                                                                  

The unique optimal solution for objective                        would be                                           where   
             denotes the standard deviation of     across environments. 

Proposition 2 (Success of Risk Variance Minimization) 
The objective                        reaches the optimum if and only if                      .

 Implication from Prop 1: minimizing the expectation of risks across environments would 
inevitably lead the model to rely on spurious correlation

 Implication from Prop 2: if the model yields equal performance on different environments, it 
would manage to leverage the invariant features



  Initial version: jointly minimize the expectation and variance of risks

Explore-to-Extrapolate Risk Minimization
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  Final version: adversarial training multiple context generators

where                                                                                  . 

Key issue: no/ambiguous environment in observed data

context generator: augment 
training data and simulate 
multiple environments

Environment 
Exploration

Risk 
Extrapolation

predictor: graph neural 
networks for classification

risk function for data under 
the k-th environment



Explore-to-Extrapolate Risk Minimization 
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  Model instantiations: 
•            GNN (output node-level   prediction) 
•              graph editer (output a new graph via add/ 

delete edges) 
• Training algorithm: REINFORCE for graph editer
    + gradient descent for GNN predictor 

where                                                                                  . context generator: augment 
training data and simulate 
multiple environments

Environment 
Exploration

Risk 
Extrapolation

predictor: graph neural 
networks for classification

risk function for data under 
the k-th environment



Theoretical Analysis
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Assumption 2 (Environment Heterogeneity) 
For               that satisfies Assumption 1, there exists a random variable     such that                   
where      is a functional mapping. We assume that                          would arbitrarily change across 
environments            .

Theorem 1 (Interpretations for New Learning Objective) 

If we treat the predictive distribution            as a variational distribution, then 1) minimizing the 
expectation of risks contributes to                          , i.e., enforcing the sufficiency condition on      
for prediction, and 2) minimizing the variance of risks would play a role for                              , i.e., 
enforcing the invariance condition                                 .

Intuitive Explanation:  two portions of features in input data, one is domain-invariant for prediction 
and the other contributes to sensitive prediction that can arbitrary change on environments. 
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Theoretical Analysis (Cont.)
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Theorem 2 (Guarantee of Valid OOD solution) 
Under Assumption 1 and 2, if the GNN encoder                 satisfies that 1)                         (invariance 
condition) and 2)               is maximized (sufficiency condition), then the model       given by             
is the solution to the formulated OOD problem.

Theorem 3 (Effectiveness for Reducing OOD Generalization Error) 

Optimizing the learning objective with training data can minimize the upper bound for OOD error 
measured by                                             on condition that                                                .

From information-theoretic perspective,

1) training error 

2) OOD generalization error 



 Evalution protocol of out-of-distribution generalization
• Training on limited data and testing on new unseen data
• Differences between training and testing distributions

 Three types of distribution shifts on graphs
• Artificial transformation: add synthetic spurious node features to data
• Cross-domain transfers: training and testing within different graphs
• Temporal evolution: training in the past and evaluation in the future

Experiment Setup
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train test



Results on Artificial Transformation
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  Setup: use a randomly initialized GCN to generate spurious node features, use 
another GCN to generate ground-truth node labels based on input node features 

  Results (when using GCN as the predictor backbone): 
• EERM (ours) outperforms empirical risk minimization (ERM) on eight test graphs
• EERM can reduce the dependence on spurious features than ERM
• EERM is robust to synthetic data generated by different GNNs

Figure. Experiment results on Cora with artificial spurious features. (a) Test accuracy on eight testing 
graphs (with different environment ids). (b) Training accuracy during inference w/ and w/o using 
spurious features. (c) Averaged test accuracy using different GNNs for synthetic data generation.



Results on Cross-Graph Transfer
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EERM achieves up to 7.0% (resp. 7.2%) impv. on ROC-AUC (resp. accuracy) than ERM

Figure. ROC-AUC results on Twitch-Explicit when training on one graph and testing on others with 
different GNN predictors (GCN, GAT and GCNII).
Table. Accuracy results on Facebook-100 when using different configurations of training graphs and 
testing on new graphs Penn, Brown and Texas



Results on Temporal Graph Evoluation 
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  Dynamic graph snapshot (Elliptic): 
• A graph is generated at every 

timestamp (nodes not shared)
• Divide train/valid/test graphs according 

to timestamps

  Temporal augmented graph (OGB-
Arxiv): 

• Nodes and edges are updated in one 
graph as time goes by

• Divide train/valid/test nodes according 
to time features

• Large time gaps between tr/te nodes

Figure. F1 score results on Elliptic with dynamic graph 
snapshots (chronologically divided into 9 test groups)

Table. Accuracy results on OGBN-Arxiv whose testing 
nodes are divided into three-fold according to time



Conclusions
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We show by examples that traditional methods 
may fail with relying on spurious graph features

Propose a new invariant learning approach 
(explore-to-extrapolate risk minimization)

We prove that the new approach guarantee a 
valid solution for OOD generalization

Prove that the new objective can effectively 
reduce OOD error bound on new data

We empirically verify the model with protocols 
including three different distribution shifts

The results on multiple GNN backbones show 
the superiority and robustness of our model

Problem Methodology

Theory Evalution

We mathetically formulate the problem of out-
of-distribution generalization on graphs

Re-formulate the invariance principle for graph-
structured data as a cornerstone assumption

Code available at https://github.com/qitianwu/GraphOOD-EERM 


