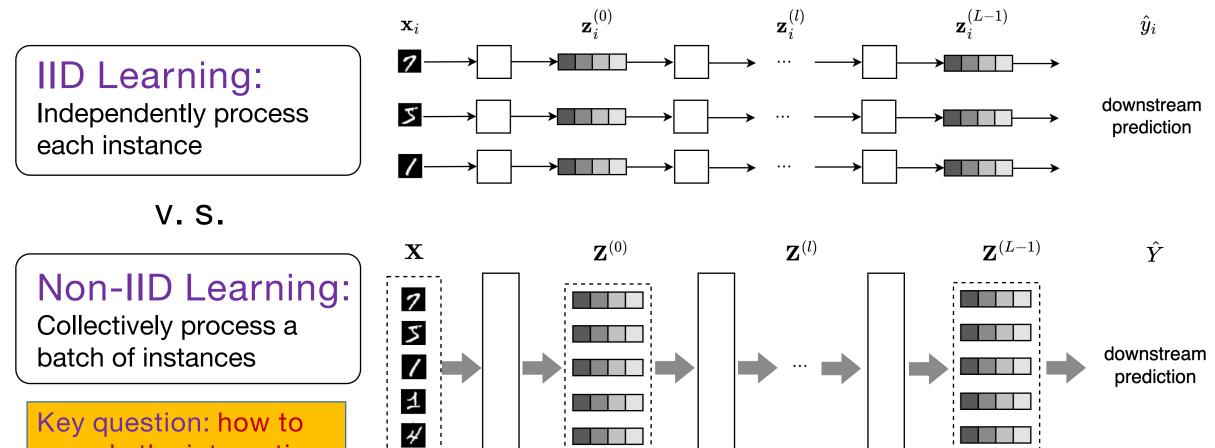
DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion

Qitian Wu, Chenxiao Yang, Wentao Zhao, Yixuan He, David Wipf, Junchi Yan

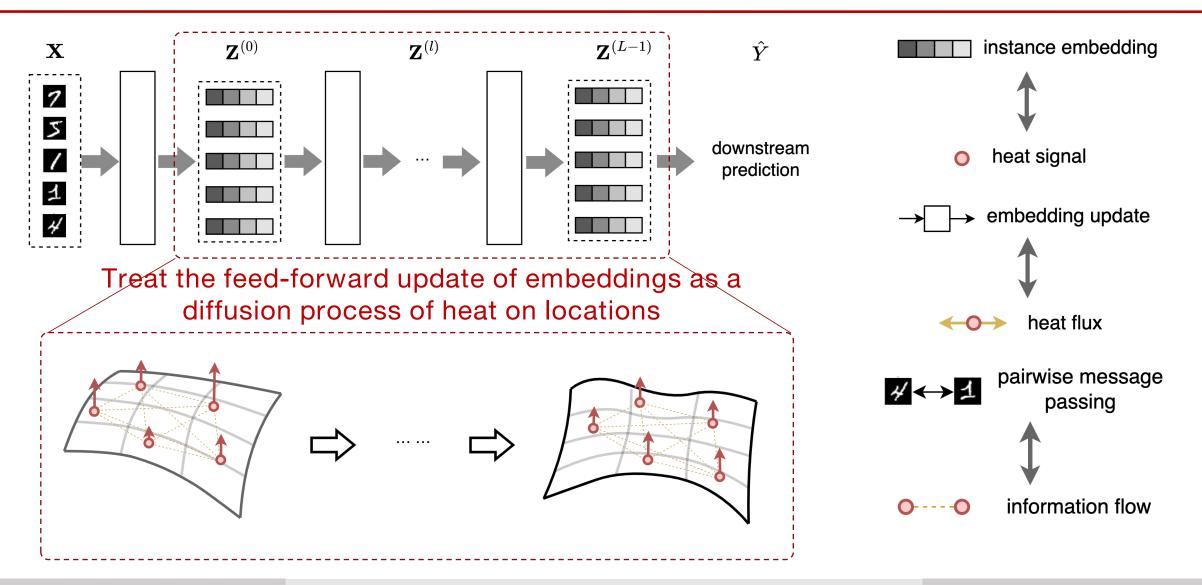
Learning with IID v.s. non-IID Hypothesis



encode the interactions for representations

Qitian Wu et al.

NN Feed-forward as Diffusion Process



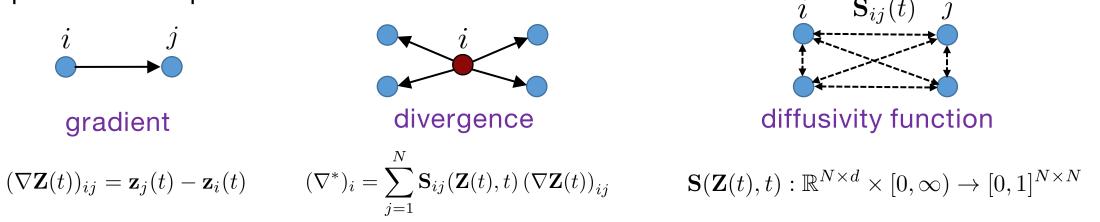
Qitian Wu et al.

General Formulation of Diffusion Process

The diffusion process of N particles driven by initial states and pairwise interactions:

$$\frac{\partial \mathbf{Z}(t)}{\partial t} = \nabla^* \left(\mathbf{S}(\mathbf{Z}(t), t) \odot \nabla \mathbf{Z}(t) \right), \quad \text{s. t. } \mathbf{Z}(0) = [\mathbf{x}_i]_{i=1}^N, \quad t \ge 0$$

Important concepts:



Diffusion over discrete space composed of N instances with latent structures:

$$\frac{\partial \mathbf{z}_i(t)}{\partial t} = \sum_{j=1}^N \mathbf{S}_{ij}(\mathbf{Z}(t), t)(\mathbf{z}_j(t) - \mathbf{z}_i(t))$$

Qitian Wu et al.

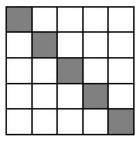
Diffusion with Latent Structures

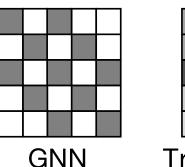
The iterative dynamics (by explicit scheme) of diffusion induce feed-forward layers:

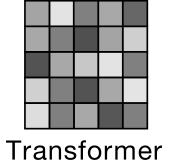
$$\mathbf{z}_{i}^{(k+1)} = \left(1 - \tau \sum_{j=1}^{N} \mathbf{S}_{ij}^{(k)}\right) \mathbf{z}_{i}^{(k)} + \tau \sum_{j=1}^{N} \mathbf{S}_{ij}^{(k)} \mathbf{z}_{j}^{(k)}$$

The $N \times N$ diffusivity $\mathbf{S}^{(k)}$ is a measure of the rate at which the node signals spread

- $S^{(k)}$ is an identity matrix: message passing only through self-loops
- $S^{(k)}$ only has non-zero values for observed edges: message passing over a graph
- $S^{(k)}$ can have non-zero values for all entries: all-pair message passing \Im







Key question: How to determine a proper diffusivity function for learning desirable node representations?

MLP

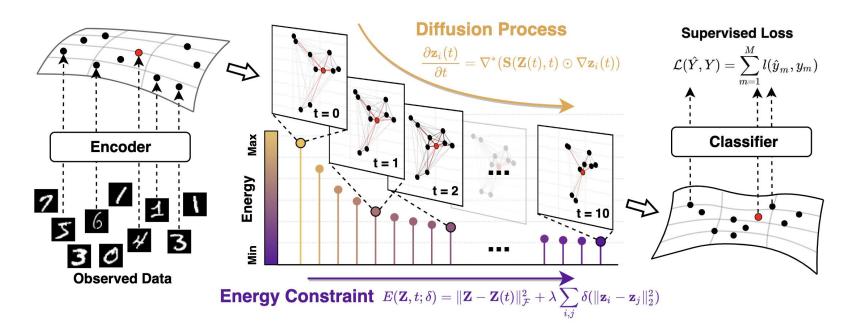
Qitian Wu et al.

Energy-Constrained Diffusion Process

Principle 1: particle states evolution described by a diffusion process

Principle 2: the evolutionary directions towards descending the global energy

Key insight: treat diffusivity as latent variables whose optimality is given by descent criteria w.r.t. a principled global energy



$$\begin{aligned} \mathbf{z}_{i}^{(k+1)} &= \left(1 - \tau \sum_{j=1}^{N} \mathbf{S}_{ij}^{(k)}\right) \mathbf{z}_{i}^{(k)} + \tau \sum_{j=1}^{N} \mathbf{S}_{ij}^{(k)} \mathbf{z}_{j}^{(k)} \\ \text{s. t. } \mathbf{z}_{i}^{(0)} &= \mathbf{x}_{i}, \quad E(\mathbf{Z}^{(k+1)}, k; \delta) \leq E(\mathbf{Z}^{(k)}, k-1; \delta), \quad k \geq 1. \end{aligned}$$

Qitian Wu et al.

Closed-Form Solutions for Diffusion Dynamics

Theorem (Optimal Diffusivity Estimates for Energy-Constrained Diffusion)

For any regularized energy over $\mathbf{Z} = \{\mathbf{z}_i\}_{i=1}^N$ defined by the form

$$E(\mathbf{Z}, k; \delta) = \|\mathbf{Z} - \mathbf{Z}^{(k)}\|_{\mathcal{F}}^2 + \lambda \sum_{i,j} \delta(\|\mathbf{z}_i - \mathbf{z}_j\|_2^2)$$

where $\delta : \mathbb{R}^+ \to \mathbb{R}$ is a concave, non-decreasing function, the diffusion process with diffusivity

$$\hat{\mathbf{S}}_{ij}^{(k)} = \frac{\omega_{ij}^{(k)}}{\sum_{l=1}^{N} \omega_{il}^{(k)}}, \quad \omega_{ij}^{(k)} = \left. \frac{\partial \delta(z^2)}{\partial z^2} \right|_{z^2 = \|\mathbf{z}_i^{(k)} - \mathbf{z}_j^{(k)}\|_2^2}$$

yields a descent step on the energy, i.e., $E(\mathbf{Z}^{(k+1)}, k; \delta) \leq E(\mathbf{Z}^{(k)}, k-1; \delta)$

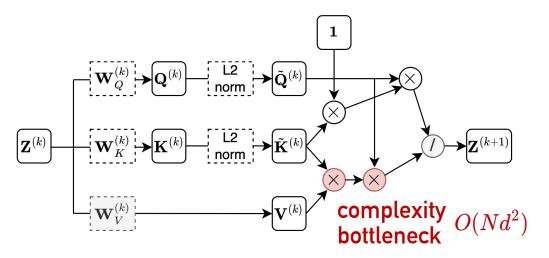
$$\begin{array}{ll} \text{Diffusivity Inference:} \quad \mathbf{\hat{S}}_{ij}^{(k)} = \frac{f(\|\mathbf{z}_i^{(k)} - \mathbf{z}_j^{(k)}\|_2^2)}{\sum_{l=1}^N f(\|\mathbf{z}_i^{(k)} - \mathbf{z}_l^{(k)}\|_2^2)}, \quad 1 \le i, j \le N \\ \text{State Update:} \quad \mathbf{z}_i^{(k+1)} = \left(1 - \tau \sum_{j=1}^N \mathbf{\hat{S}}_{ij}^{(k)}\right) \mathbf{z}_i^{(k)} + \tau \sum_{j=1}^N \mathbf{\hat{S}}_{ij}^{(k)} \mathbf{z}_j^{(k)}, \quad 1 \le i \le N \end{array}$$

Qitian Wu et al.

DIFFormer: Instantiations of Diffusivity

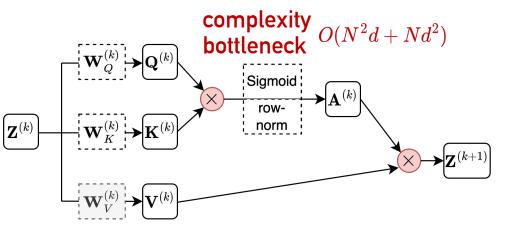
DIFFormer layer with simple diffusivity (DIFFormer-s):

$$\omega_{ij}^{(k)} = f(\|\tilde{\mathbf{z}}_{i}^{(k)} - \tilde{\mathbf{z}}_{j}^{(k)}\|_{2}^{2}) = 1 + \left(\frac{\mathbf{z}_{i}^{(k)}}{\|\mathbf{z}_{i}^{(k)}\|_{2}}\right)^{\top} \left(\frac{\mathbf{z}_{j}^{(k)}}{\|\mathbf{z}_{j}^{(k)}\|_{2}}\right)$$
$$\sum_{j=1}^{N} \mathbf{S}_{ij}^{(k)} \mathbf{z}_{j}^{(k)} = \sum_{j=1}^{N} \frac{1 + (\tilde{\mathbf{z}}_{i}^{(k)})^{\top} \tilde{\mathbf{z}}_{j}^{(k)}}{\sum_{l=1}^{N} \left(1 + (\tilde{\mathbf{z}}_{i}^{(k)})^{\top} \tilde{\mathbf{z}}_{l}^{(k)}\right)} \mathbf{z}_{j}^{(k)}$$



DIFFormer layer with advanced diffusivity (DIFFormer-a):

$$\omega_{ij}^{(k)} = f(\|\tilde{\mathbf{z}}_{i}^{(k)} - \tilde{\mathbf{z}}_{j}^{(k)}\|_{2}^{2}) = \frac{1}{1 + \exp\left(-(\mathbf{z}_{i}^{(k)})^{\top}(\mathbf{z}_{j}^{(k)})\right)}$$
$$\sum_{j=1}^{N} \mathbf{S}_{ij}^{(k)} \mathbf{z}_{j}^{(k)} = \sum_{j=1}^{N} \frac{\text{sigmoid}\left((\mathbf{z}_{i}^{(k)})^{\top} \mathbf{z}_{j}^{(k)}\right)}{\sum_{l=1}^{N} \text{sigmoid}\left((\mathbf{z}_{i}^{(k)})^{\top} \mathbf{z}_{l}^{(k)}\right)} \mathbf{z}_{j}^{(k)}$$



Qitian Wu et al.

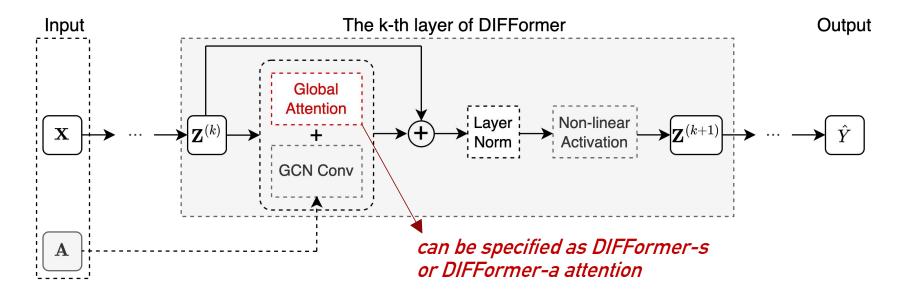
DIFFormer: Extension to a Transformer Layer

Incorporation of input graphs (if available): add graph convolution with global attention

$$\overline{\mathbf{P}}^{(k)} = \frac{1}{2} \left(\mathbf{\hat{S}}^{(k)} + \tilde{\mathbf{A}} \right) \mathbf{Z}^{(k)}$$

DIFFormer layer for updating embedding of the next layer:

$$\mathbf{Z}^{(k+1)} = \sigma' \left(\text{LayerNorm} \left(\tau \overline{\mathbf{P}}^{(k)} + (1-\tau) \mathbf{Z}^{(k)} \right) \right)$$



DIFFormer: Scaling to Large-Scale Datasets

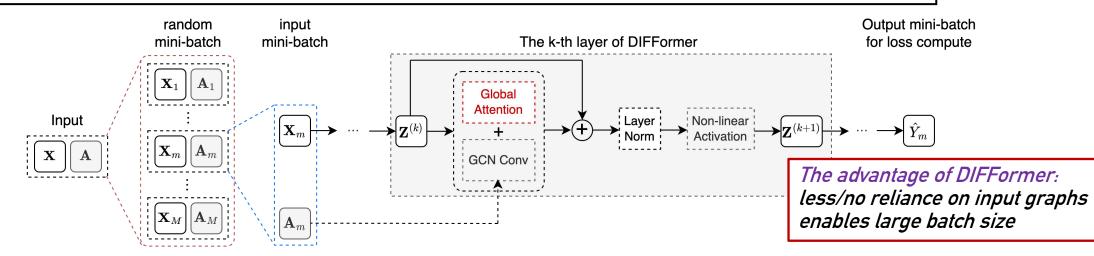
Large-scale datasets with massive amount of data, e.g., N instances (N can be arbitrarily large)

Traditional IID learning enables mini-batch learning with a moderate batch size B << N

How can message passing networks handle large-scale graphs?

Existing solutions: 1. neighbor sampling (slow training and limited receptive field)

2. graph clustering (time-consuming pre-processing and limited receptive field)



Qitian Wu et al.

Interpretations of MLP/GNNs as Diffusion

	Energy function	Diffusivity	Illustration
MLP	$\ \mathbf{Z}-\mathbf{Z}^{(k)}\ _2^2$	$\mathbf{S}_{ij}^{(k)} = \begin{cases} 1, & \text{if } i = j \\ 0, & otherwise \end{cases}$	
GCN	$\sum_{(i,j)\in\mathcal{E}} \ \mathbf{z}_i - \mathbf{z}_j\ _2^2$	$\mathbf{S}_{ij}^{(k)} = \begin{cases} \frac{1}{\sqrt{d_i d_j}}, & \text{if } (i,j) \in \mathcal{E} \\ 0, & otherwise \end{cases}$	
GAT	$\sum_{(i,j)\in\mathcal{E}}\delta(\ \mathbf{z}_i-\mathbf{z}_j\ _2^2)$	$\mathbf{S}_{ij}^{(k)} = \begin{cases} \frac{f(\ \mathbf{z}_i^{(k)} - \mathbf{z}_j^{(k)}\ _2^2)}{\sum_{l:(i,l)\in\mathcal{E}} f(\ \mathbf{z}_i^{(k)} - \mathbf{z}_l^{(k)}\ _2^2)}, & \text{if } (i,j)\in\mathcal{E} \\ 0, & otherwise \end{cases}$	
DIFFormer	$\ \mathbf{Z} - \mathbf{Z}^{(k)}\ _2^2 + \lambda \sum_{i,j} \delta(\ \mathbf{z}_i - \mathbf{z}_j\ _2^2)$	$\mathbf{S}_{ij}^{(k)} = \frac{f(\ \mathbf{z}_i^{(k)} - \mathbf{z}_j^{(k)}\ _2^2)}{\sum_{l=1}^N f(\ \mathbf{z}_i^{(k)} - \mathbf{z}_l^{(k)}\ _2^2)}, 1 \le i, j \le N$	

Qitian Wu et al.

Results on Graph-based Node Classification

Туре	Model	Non-linearity	PDE-solver	Input-G	Cora	Citeseer	Pubmed	
	MLP	R	-	-	56.1 ± 1.6	56.7 ± 1.7	69.8 ± 1.5	
Basic models	LP	-	-	R	68.2	42.8	65.8	
	ManiReg	R	-	R	60.4 ± 0.8	67.2 ± 1.6	71.3 ± 1.4	
	GCN	R	-	R	81.5 ± 1.3	71.9 ± 1.9	77.8 ± 2.9	
	GAT	R	· •	R	83.0 ± 0.7	72.5 ± 0.7	79.0 ± 0.3	
	SGC		-	R	81.0 ± 0.0	71.9 ± 0.1	78.9 ± 0.0	
Stenderd CNN-	GCN-kNN	R	-	-	72.2 ± 1.8	56.8 ± 3.2	74.5 ± 3.2	
Standard GNNs	GAT-kNN	R	-	8 - -	73.8 ± 1.7	56.4 ± 3.8	75.4 ± 1.3	
	Dense GAT	R	-	-	78.5 ± 2.5	66.4 ± 1.5	66.4 ± 1.3	
	LDS	R	-		83.9 ± 0.6	$\textbf{74.8} \pm \textbf{0.3}$	out-of-mem	
	GLCN	R	-	-	83.1 ± 0.5	72.5 ± 0.9	78.4 ± 1.1	
6	GRAND-1	-	R	R	83.6 ± 1.0	73.4 ± 0.5	78.8 ± 1.7	
	GRAND	R	R	R	83.3 ± 1.3	74.1 ± 1.7	78.1 ± 2.1	
Siffusion based models	GRAND++	R	R	R	82.2 ± 1.1	73.3 ± 0.9	78.1 ± 0.9	
Diffusion-based models	GDC	R	-	R	83.6 ± 0.2	73.4 ± 0.3	78.7 ± 0.4	
	GraphHeat	R	-	R	83.7	72.5	80.5	
	DGC-Euler	-	-	R	83.3 ± 0.0	73.3 ± 0.1	$80.3\pm0.$	
	NodeFormer	-	-	12	83.4 ± 0.2	73.0 ± 0.3	81.5 ± 0.4	
Graph Transformers	DIFFORMER-s		-	-	$\textbf{85.9} \pm \textbf{0.4}$	73.5 ± 0.3	81.8 ± 0.3	
-	DIFFORMER-a	-	-	-	$\textbf{84.1} \pm \textbf{0.6}$	$\textbf{75.7} \pm \textbf{0.3}$	80.5 ± 1.2	

Results of testing accuracy on semi-supervised node classification (20 nodes per class for train)

Qitian Wu et al.

Results of testing accuracy on two large-scale graph datasets

Models	Proteins	Pokec		
MLP	72.41 ± 0.10	60.15 ± 0.03		
LP	74.73	52.73		
SGC	49.03 ± 0.93	52.03 ± 0.84		
GCN	$74.22\pm0.49^*$	$62.31 \pm 1.13^{*}$		
GAT	$75.11 \pm 1.45^{*}$	$65.57 \pm 0.34^*$		
NodeFormer	$\textbf{77.45} \pm \textbf{1.15}^*$	$\textbf{68.32} \pm \textbf{0.45}^*$		
DIFFORMER-s	$\textbf{79.49} \pm \textbf{0.44}^{*}$	$\textbf{69.24} \pm \textbf{0.76}^*$		

Proteins: 132,534 nodes, 39,561,252 edges Pokec: 1,632,803 nodes, 30,622,564 edges

We use batch size 10K/100K for training DIFFormer-s using a single GPU on Proteins/Pokec

Test Acc and memory costs of different batch sizes on Pokec

Batch size	5000	10000	20000	50000	100000	200000
Test Acc (%) GPU Memory (MB)		$67.48 \pm 0.81 \\ 1326$	$68.53 \pm 0.75 \\ 1539$	$\begin{array}{c} 68.96 \pm 0.63 \\ 2060 \end{array}$	$\begin{array}{c} 69.24\pm0.76\\ 2928\end{array}$	

Results on Image & Text Classification

Results of testing accuracy on semi-supervised image and text classification

Dataset		MLP	LP	ManiReg	GCN-kNN	GAT-kNN	DenseGAT	GLCN	DIFFORMER-s	DIFFORMER-a
CIFAR	100 labels 500 labels 1000 labels	$\begin{vmatrix} 65.9 \pm 1.3 \\ 73.2 \pm 0.4 \\ 75.4 \pm 0.6 \end{vmatrix}$	66.2 70.6 71.9	67.0 ± 1.9 72.6 ± 1.2 74.3 ± 0.4	66.7 ± 1.5 72.9 ± 0.4 74.7 ± 0.5	66.0 ± 2.1 72.4 ± 0.5 74.1 ± 0.5	out-of-memory out-of-memory out-of-memory	66.6 ± 1.4 72.8 ± 0.5 74.7 ± 0.3	$69.1 \pm 1.1 \\74.8 \pm 0.5 \\76.6 \pm 0.3$	69.3 ± 1.4 74.0 ± 0.6 75.9 ± 0.3
STL	100 labels 500 labels 1000 labels	$66.2 \pm 1.4 \\ 73.0 \pm 0.8 \\ 75.0 \pm 0.8$	65.2 71.8 72.7	66.5 ± 1.9 72.5 ± 0.5 74.2 ± 0.5	66.9 ± 0.5 72.1 ± 0.8 73.7 ± 0.4	66.5 ± 0.8 72.0 ± 0.8 73.9 ± 0.6	out-of-memory out-of-memory out-of-memory	66.4 ± 0.8 72.4 ± 1.3 74.3 ± 0.7	67.8 ± 1.1 73.7 ± 0.6 76.4 ± 0.5	66.8 ± 1.1 72.9 ± 0.7 75.3 ± 0.6
20News	1000 labels 2000 labels 4000 labels	$\begin{vmatrix} 54.1 \pm 0.9 \\ 57.8 \pm 0.9 \\ 62.4 \pm 0.6 \end{vmatrix}$	55.9 57.6 59.5	56.3 ± 1.2 60.0 ± 0.8 63.6 ± 0.7	56.1 ± 0.6 60.6 ± 1.3 64.3 ± 1.0	55.2 ± 0.8 59.1 ± 2.2 62.9 ± 0.7	54.6 ± 0.2 59.3 ± 1.4 62.4 ± 1.0	56.2 ± 0.8 60.2 ± 0.7 64.1 ± 0.8	$57.7 \pm 0.3 \\ 61.2 \pm 0.6 \\ 65.9 \pm 0.8$	57.9 ± 0.7 61.3 ± 1.0 64.8 ± 1.0

For image datasets, use a pretrained network to obtain embeddings of images

Use k-nearest-neighbor to construct a graph for baseline methods GCN-kNN and GAT-kNN

DIFFormer-s and DIFFormer-a without using any graph structure outperform the competitors

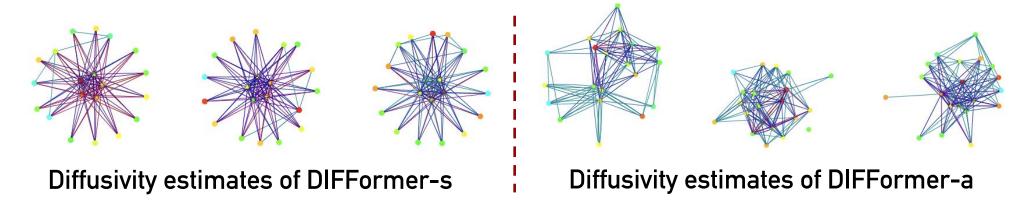
Results on Spatial-Temporal Prediction

Results of testing mean square error for predicting spatial-temporal dynamics based on history

Dataset	MLP	GCN	GAT	Dense GAT	GAT-kNN	GCN-kNN	DIFFORMER-s	DIFFORMER-a	DIFFormer-s w/o g	DIFFORMER-a w/o g
Chickenpox	0.924 (±0.001)	0.923 (±0.001)	0.924 (±0.002)	0.935 (±0.005)	0.926 (±0.004)	0.936 (±0.004)	0.914 (0.006)	0.915 (0.008)	0.916 (0.006)	0.916 (0.006)
Covid	$ \begin{array}{c c} 0.956 \\ (\pm 0.198) \end{array} $	1.080 (±0.162)	1.052 (±0.336)	1.524 (±0.319)	0.861 (±0.123)	1.475 (±0.560)	0.779 (0.037)	0.757 (0.048)	0.779 (0.028)	0.741 (0.052)
WikiMath	1.073 (±0.042)	1.292 (±0.125)	1.339 (±0.073)	0.826 (±0.070)	0.882 (±0.015)	1.023 (±0.058)	0.731 (0.007)	0.763 (0.020)	0.727 (0.025)	0.716 (0.030)

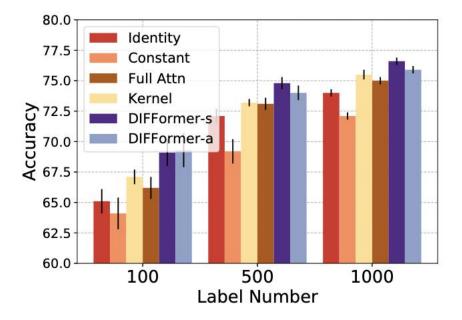
Goal: Given the historical graph snapshot, one needs to predict node labels at the next step

DIFFormer without using graph structure (w/o g) can sometimes yield better prediction



Qitian Wu et al.

Ablation Study and Hyperparameters



Ablation study on attention functions (i.e., diffusivity parameterization)

Impact of model depth K and step size $\tau\,$ for diffusion iteration

12

Model Depth K

16

20

100

80

60

40

20

0

2

4

GCN

DenseGAT

DIFFormer $\tau = 0.5$

DIFFormer $\tau = 0.2$

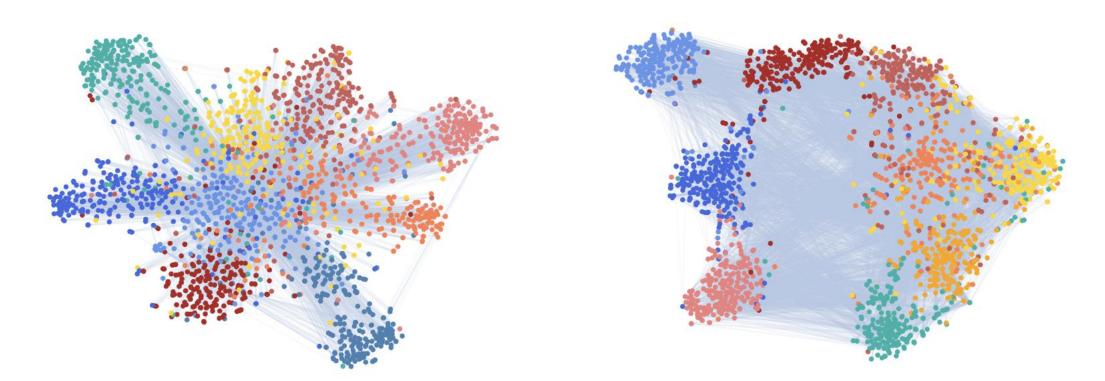
DIFFormer $\tau = 0.1$

8

Accuracy

24

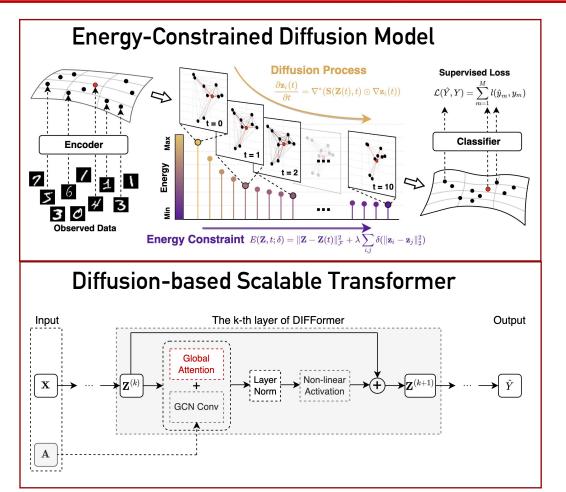
Visualization of Representations

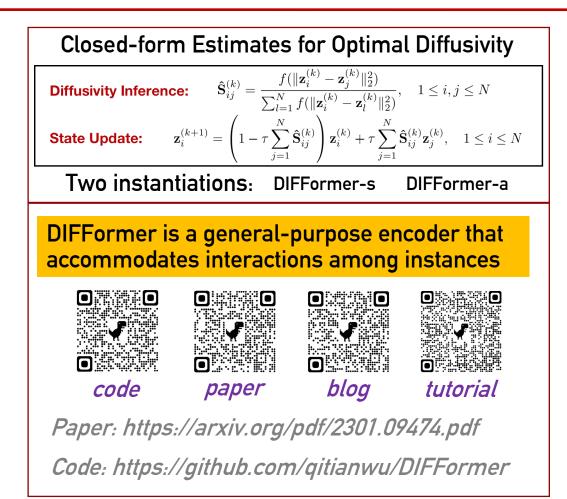


Instance embeddings (colored by different classes) and attention weights (edges with different strengths) on 20News (the left) and STL-10 (the right)

Qitian Wu et al.

Conclusion





[1] NodeFormer: A Scalable Graph Structure Learning Transformer for Node Classification, in NeurIPS 2022

[2] DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, in ICLR 2023

Qitian Wu et al.

Application Scenarios of DIFFormer

DIFFormer is a general-purpose encoder backbone

DIFFormer can solve predictive tasks with data inter-dependence (i.e., a graph)

Goal: Given node features $\mathbf{X}=\{\mathbf{x}_i\}$ and an input graph $\mathbf{A}=\{\mathbf{a}_{ij}\}$, predict node labels $\hat{Y}=\{\hat{y}_i\}$

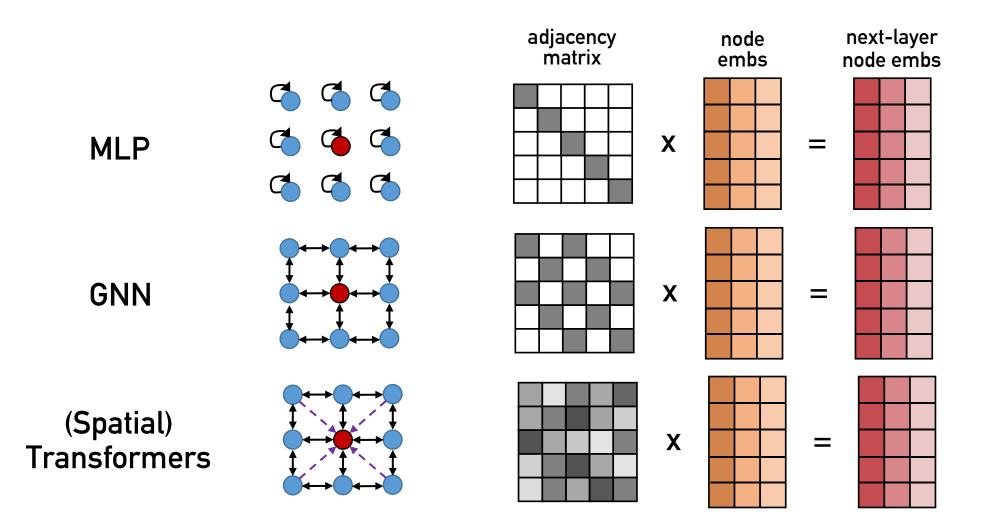
 $\mathbf{Z} = \text{DIFFormer}(\mathbf{X}, \mathbf{A})$ $\hat{Y} = \text{FNN}(\mathbf{Z})$

DIFFormer can model pairwise influence of instances for computing representations

```
Goal: Training a classifier a dataset of instances = \{\mathbf{x}_i\}
```

 $\mathbf{Z} = \text{DIFFormer}(\mathbf{X}, \mathbf{A})$

DIFFormer can estimate latent interaction graphs over entries in inputs of various forms



Qitian Wu et al.