Energy-based Out-of-Distribution Detection for Graph Neural Networks

Qitian Wu, Yiting Chen, Chenxiao Yang, Junchi Yan

code

Out-of-Distribution Generalization

- 1: perform well on IND testing data
 - 2: perform well on OOD testing data

testing data

in-distribution (IND) data

OOD Generalization:

Train a robust classifier that can <u>perform</u> <u>well</u> on testing samples from disparate distributions than training data

Qitian Wu, et al., Handling Distribution Shifts on Graphs: An Invariance Perspective, in ICLR'22 Nianzu Yang, et al., Learning Substructure Invariance for Out-of-Distribution Molecular Representations, in NeurIPS'22 Chenxiao Yang et al., Towards out-of-distribution sequential event prediction: A causal treatment, in NeurIPS'22

Out-of-Distribution Detection

training data

perform well on IND testing data
 identify OOD testing data

testing data

out-of-distribution (OOD) data

in-distribution (IND) data

OOD Detection:

Train a robust classifier that can <u>identify</u> samples from disparate distributions than (in-distribution) training data

Challenges of Graph Data Modeling

each instance is drawed from the same data distribution independently (i.i.d.)

instances have inter-connection and cannot be treated as i.i.d. samples (non-i.i.d.)

Image Data v.s. Graph Data

Applications: fraud detection in financial networks, risk control in autonomous driving, etc.

GNNSafe: OOD Detection on Graph Data

OOD Detection on Graph Data

- Assume an input graph G = (V, E), where V, E denotes the node and edge set.
 Each node has an input feature vector x_i and label y_i. The node instances are divided into a labeled set I_s and an unlabeled set I_u, and I = I_s ∪ I_u.
- Define $X = {\mathbf{x}_i}_{i \in \mathcal{I}}$ and $Y = {\mathbf{y}_i}_{i \in \mathcal{I}}$. Our goal is to learn a node-level classifier f that can predict node labels $\hat{Y} = {\hat{y}_i}_{i \in \mathcal{I}}$, denoted as $\hat{Y} = f(\mathbf{X}, A)$, and in the meanwhile the classifier f can induce a decision function $G(\mathbf{x}, \mathcal{G}_{\mathbf{x}}; f)$ for identifying OOD samples

$$G(\mathbf{x}, \mathcal{G}_{\mathbf{x}}; f) = \begin{cases} 1, & \mathbf{x} \text{ is an in-distribution instance,} \\ 0, & \mathbf{x} \text{ is an out-of-distribution instance,} \end{cases}$$

where $\mathcal{G}_{\mathbf{x}}$ denotes the ego-graph centered at node instance \mathbf{x} .

GNN-based Node-Level Prediction

Adopt graph neural networks (GNNs) to compute node representations:

$$Z^{(l)} = \sigma \left(D^{-1/2} \tilde{A} D^{-1/2} Z^{(l-1)} W^{(l)} \right), \quad Z^{(l-1)} = [\mathbf{z}_i^{(l-1)}]_{i \in \mathcal{I}}, \quad Z^{(0)} = X$$

• The GNN classifier gives a predictive distribution for node labels:

$$p(y \mid \mathbf{x}, \mathcal{G}_{\mathbf{x}}) = \frac{e^{h_{\theta}(\mathbf{x}, \mathcal{G}_{\mathbf{x}})_{[y]}}}{\sum_{c=1}^{C} e^{h_{\theta}(\mathbf{x}, \mathcal{G}_{\mathbf{x}})_{[c]}}} \quad \text{where } \mathbf{z}_{i}^{(L)} = h_{\theta}(\mathbf{x}, \mathcal{G}_{\mathbf{x}})$$

• If we assume $E(\mathbf{x}, \mathcal{G}_{\mathbf{x}}, y; h_{\theta}) = -h_{\theta}(\mathbf{x}, \mathcal{G}_{\mathbf{x}})_{[y]}$ as an energy function, we have

$$p(y|\mathbf{x}, \mathcal{G}_{\mathbf{x}}) = \frac{e^{-E(\mathbf{x}, \mathcal{G}_{\mathbf{x}}, y)}}{\sum_{y'} e^{-E(\mathbf{x}, \mathcal{G}_{\mathbf{x}}, y')}} = \frac{e^{-E(\mathbf{x}, \mathcal{G}_{\mathbf{x}}, y)}}{e^{-E(\mathbf{x}, \mathcal{G}_{\mathbf{x}})}} \quad a \text{ Boltzmann distribution}$$
$$E(\mathbf{x}, \mathcal{G}_{\mathbf{x}}; h_{\theta}) = -\log \sum_{c=1}^{C} e^{h_{\theta}(\mathbf{x}, \mathcal{G}_{\mathbf{x}})_{[c]}} \quad free \text{ energy for OOD detection}$$

Energy Models for OOD Detection

- For a given GNN classifier $h_{ heta}(\mathbf{x},\mathcal{G}_{\mathbf{x}})$, we have the initial energy as

 $\mathbf{E}^{(0)} = [E(\mathbf{x}_i, \mathcal{G}_{\mathbf{x}_i}; h_{\theta})]_{i \in \mathcal{I}} \qquad \text{where } E(\mathbf{x}, \mathcal{G}_{\mathbf{x}}; h_{\theta}) = -\log \sum_{i=1}^{C} e^{h_{\theta}(\mathbf{x}, \mathcal{G}_{\mathbf{x}})_{[c]}}$

• Then we consider propagating the energy values along graph structures

$$\mathbf{E}^{(k)} = \alpha \mathbf{E}^{(k-1)} + (1-\alpha)D^{-1}A\mathbf{E}^{(k-1)}$$
 where $\mathbf{E}^{(k)} = [E_i^{(k)}]_{i \in \mathcal{I}}$

Intuition: connected nodes in the graph tend to be sampled from similar distributions

Proposition (informal)

The energy propagation facilitates *consensus* for the OOD estimation results between the target node and its neighboring nodes.

Loss Functions for Training

• If the training data only contains in-distribution data, use supervised loss:

- If the training data contains extra OOD data, we additionally consider the regularization loss: $\mathcal{L}_{sup} + \lambda \mathcal{L}_{reg}$

$$\mathcal{L}_{ref} = \frac{1}{|\mathcal{I}_s|} \sum_{i \in \mathcal{I}_s} \left(\text{ReLU} \left(\tilde{E} \left(\mathbf{x}_i, \mathcal{G}_{\mathbf{x}_i}; h_\theta \right) - t_{in} \right) \right)^2 + \frac{1}{|\mathcal{I}_o|} \sum_{j \in \mathcal{I}_o} \left(\text{ReLU} \left(t_{out} - \tilde{E} \left(\mathbf{x}_j, \mathcal{G}_{\mathbf{x}_j}; h_\theta \right) \right) \right)^2$$

extra OOD training data

Evaluation Protocols

Dataset and Splits

How to introduce distribution shifts for model evaluation?

Principles for data splits

```
P_{OOD} \neq P_{IND}P_{OOD-Tr} \neq P_{OOD-Te}P_{IND-Tr} = P_{IND-Te}
```

For multi-graph datasets:

Main Results on Real-World Datasets

Madal	OOD Expo	Twitch				Arxiv				
Iviouei		AUROC	AUPR	FPR	ID ACC	AUROC	AUPR	FPR	ID ACC	
MSP	No	33.59	49.14	97.45	68.72	63.91	75.85	90.59	53.78	
ODIN	No	58.16	72.12	93.96	70.79	55.07	68.85	100.0	51.39	
Mahalanobis	No	55.68	66.42	90.13	70.51	56.92	69.63	94.24	51.59	
Energy	No	51.24	60.81	91.61	70.40	64.20	75.78	90.80	53.36	
GKDE	No	46.48	62.11	95.62	67.44	58.32	72.62	93.84	50.76	
GPN	No	51.73	66.36	95.51	68.09	-		-	-	
GNNSAFE	No	66.82	70.97	76.24	70.40	71.06	80.44	87.01	53.39	
OE	Yes	55.72	70.18	95.07	70.73	69.80	80.15	85.16	52.39	
Energy FT	Yes	84.50	88.04	61.29	70.52	71.56	80.47	80.59	53.26	
GNNSAFE++	Yes	95.36	97.12	33.57	70.18	74.77	83.21	77.43	53.50	

OOD detection results on Twitch and Arxiv

- Metric: AUROC, AUPR, FPR for detection scores of IND-Te and OOD-Te samples
- Twitch (multi-graph dataset): use nodes in different graphs for IND/00D
- Arxiv (a temporal graph dataset): use nodes at different times for IND/00D

Main Results on Synthetic Datasets

OOD detection results on Cora, Amazon-Photo and Coauthor-CS

Model	OOD Expo	Cora			Amazon			Coauthor		
		S	F	L	S	F	L	S	F	L
MSP	No	70.90	85.39	91.36	98.27	97.31	93.97	95.30	97.05	94.88
ODIN	No	49.92	49.88	49.80	93.24	81.15	65.97	52.14	51.54	51.44
Mahalanobis	No	46.68	49.93	67.62	71.69	76.50	73.25	80.46	93.23	85.36
Energy	No	71.73	86.15	91.40	98.51	97.8 7	93.81	96.18	97.88	95.87
GKDE	No	68.61	82.79	57.23	76.39	58.96	65.58	65.87	80.69	61.15
GPN	No	77.47	85.88	90.34	97.17	87.91	92.72	34.67	72.56	83.65
GNNS AFE	No	87.52	93.44	92.80	99.58	98.55	97.35	99.60	99.64	97.23
OE	Yes	67.98	81.83	89.47	99.60	98.39	95.39	97.86	99.04	96.04
Energy FT	Yes	75.88	88.15	91.36	98.83	98.55	97.35	98.84	99.43	96.23
GNNSAFE++	Yes	90.62	95.56	92.75	99.82	99.64	97.51	99.99	99.97	97.89

S: randomly generate edges with stochastic block model

synthetic 00D data

F: modify node features via the mix of arbitrary node pairs L: use label classes to divide IND/00D

Comparison of GNN Backbones

OOD detection results with different GNN classifier backbones

Performance comparison:

- Energy < GNNSafe, Energy FT < GNNSafe++ energy propagation is effective</p>
- GNNSafe < Energy FT is energy propagation contributes to more performance gain than energy regularization

Energy Score Visualization

Energy propagation and regularization can both help to enlarge the discrimination gap

Resources and Related Materials

https://github.com/qitianwu/Graph00D-GNNSafe https://zhuanlan.zhihu.com/p/609178151

Out-of-Distribution Detection:

[1] Energy-based Out-of-Distribution Detection for Graph Neural Networks, in ICLR'23

[2] GraphDE: A Generative Framework for Debiased Learning and Out-of-Distribution Detection on Graphs, in NeurIPS'22

Out-of-Distribution Generalization:

[3] Handling Distribution Shifts on Graphs: An Invariance Perspective, in ICLR'22

[4] Learning Substructure Invariance for Out-of-Distribution Molecular Representations, in NeurIPS'22

[5] Towards out-of-distribution sequential event prediction: A causal treatment, in NeurIPS'22

Email: echo740@sjtu.edu.cn, sjtucyt@sjtu.edu.cn

