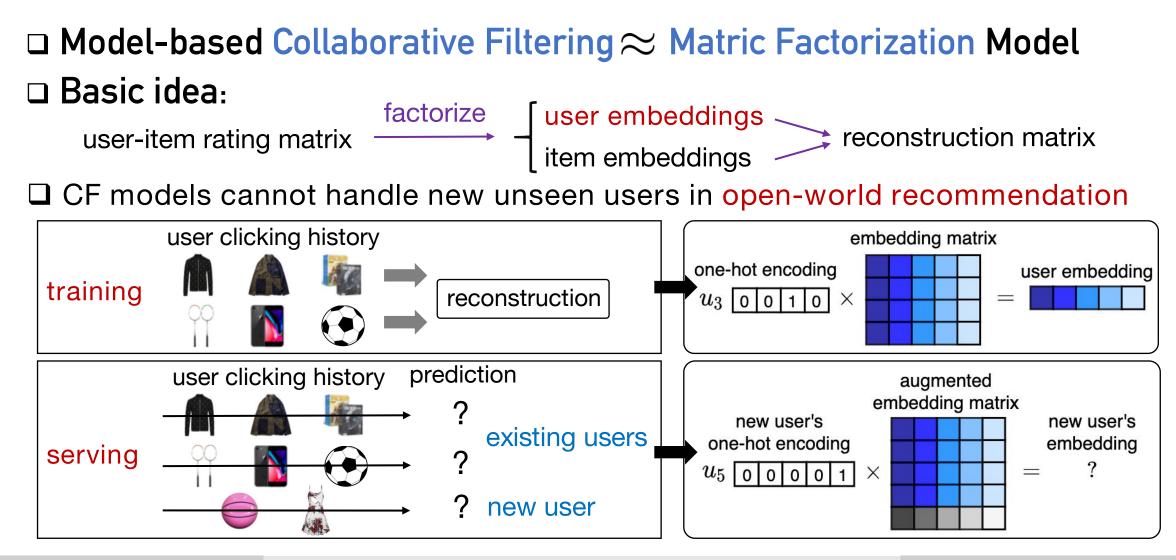
Towards Open-World Recommendation: An Inductive Model-based Collaborative Filtering Approach

Qitian Wu, Hengrui Zhang, Xiaofeng Gao, Junchi Yan, Hongyuan Zha Shanghai Jiao Tong University The Chinese University of Hong Kong, Shenzhen

Background for Recommendation



Qitian Wu et al.

Inductive Collaborative Filtering

Collaborative Filtering

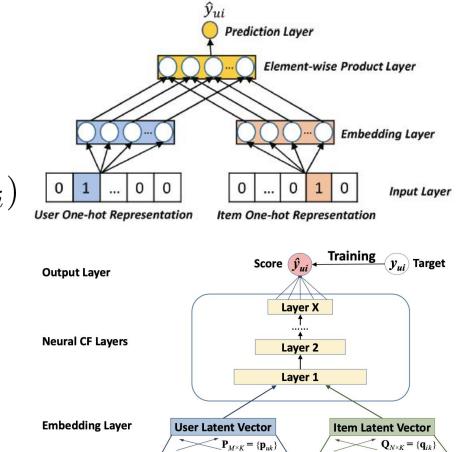
□ Formulation of CF model for RecSys:

- a user-item interaction matrix $R = \{r_{ui}\}_{M \times N}$
- assume user latent factors $\mathbf{P} = {\{\mathbf{p}_u\}_{M \times d}}$
- assume item latent factors $\mathbf{Q} = \{\mathbf{q}_i\}_{N imes d}$
- consider an interaction model $\hat{r}_{ui} = f_{ heta}(\mathbf{p}_u, \mathbf{q}_i)$
- target objective $\mathcal{L}(\hat{R}, R) = \sum_{(u,i)} L(\hat{r}_{ui}, r_{ui})$

Limitations: transductive learning

cannot handle new unseen users

model retraining requires additional cost
 retraining may also lead to over-fitting



0 0 0

1 0 0

User (u)

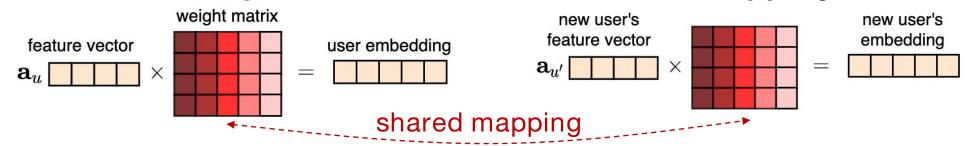
Input Layer (Sparse)

0 0 0 0 1 0

Item (i)

Challenges for Inductive Learning

Inductive learning can be achieved via shared mapping



V.S.

Expressiveness would be sacrificed with inductive learning

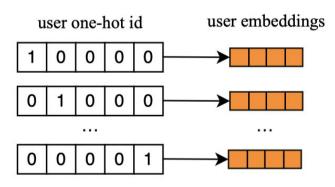
$$\begin{array}{cccc}
 & f_1 \\
 & u_1 \xrightarrow{f_1} \mathbf{p}_{u_1} \\
 & & f_2 \\
 & u_2 \xrightarrow{f_2} \mathbf{p}_{u_2}
\end{array}$$

transductive learning

pros: sufficient expressiveness cons: fail for new users $\begin{array}{c}
 f \\
 \mathbf{a}_{u_1} \to \mathbf{p}_{u_1} \\
 f \\
 \mathbf{a}_{u_2} \to \mathbf{p}_{u_2}
\end{array}$

inductive learning pros: flexible for new users cons: limited capacity/expressiveness

Related Works and Comparison



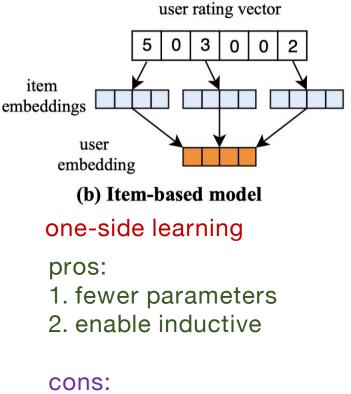
(a) General CF model incremental learning

pros:

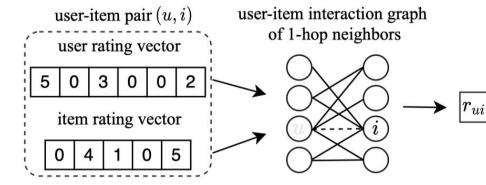
- 1. advanced capacity
- 2. fast training/inference

cons:

- 1. bad generalization
- 2. over-parametrization



1. limited capacity
 2. user-item imbalance



(c) Local-graph-based inductive model

index-agnostic learning [ICLR'20]

pros:

- 1. enable inductive
- 2. not require features

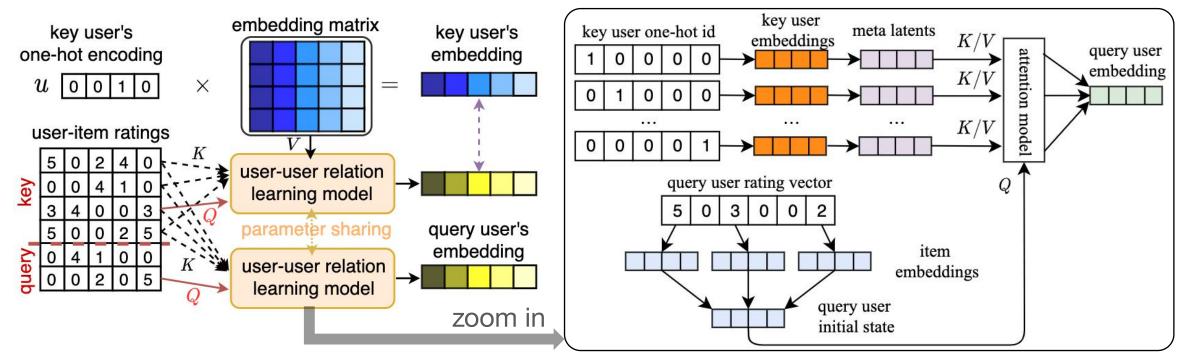
cons:

- 1. limited expressiveness
- 2. fail for implicit feedback

Our Solutions: Inductive CF Model

□ Basic idea:

- leverage one group of users to express another
- learn a latent graph over users
- message passing from existing users to new ones



Key insight: user preferences

share underlying proximity

that induces latent graphs

Our Solutions: Inductive CF Model (Cont.)

□ Partition users into two groups: $|\mathcal{U}_k| = M_k$ $|\mathcal{U}_q| = M_q$

• Key users: transductive learning (traditional model)

model: $\mathbf{P}_{k} = \{\mathbf{p}_{u}\}_{M_{k} \times d}$ $\mathbf{Q} = \{\mathbf{q}_{i}\}_{N \times d}$ $\hat{r}_{ui} = f_{\theta}(\mathbf{p}_{u}, \mathbf{q}_{i})$ learning: $\min_{\mathbf{P}_{k}, \mathbf{Q}, \theta} \mathcal{D}_{\mathcal{S}_{k}}(\hat{R}_{k}, R_{k})$ where $R_{k} = \{r_{ui}\}_{M_{k} \times N}$

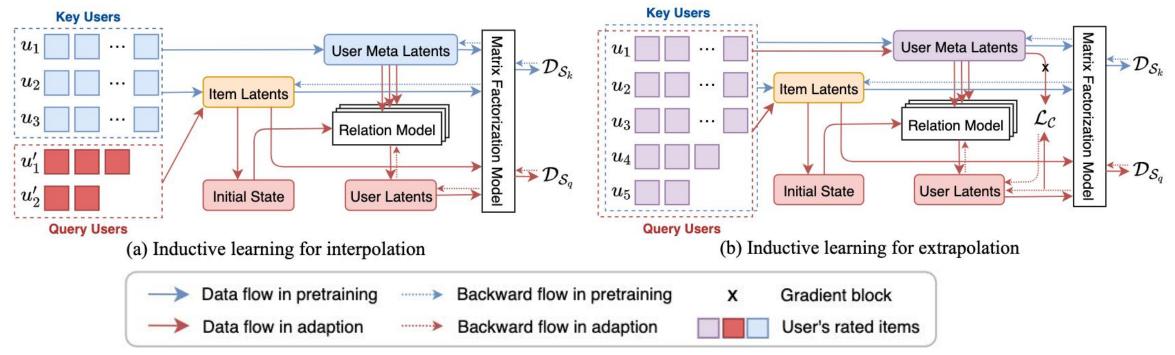
• Query users: inductive learning (new model)

$$\begin{array}{ll} \text{model:} \quad \tilde{\mathbf{p}}_{\mathbf{u}'} = \mathbf{c}_{u'}^{\top} \mathbf{P}_k \quad c_{u'u} = \frac{\mathbf{e}^{\top} [\mathbf{W}_q \mathbf{d}_{u'} \oplus \mathbf{W}_k \mathbf{p}_u]}{\sum_{u_o \in \mathcal{U}_k} \mathbf{e}^{\top} [\mathbf{W}_q \mathbf{d}_{u'} \oplus \mathbf{W}_k \mathbf{p}_{u_0}]} & \text{where } \mathbf{d}_{u'} = \sum_{i \in \mathcal{I}_{u'}} \mathbf{q}_i \\ \\ \text{learning:} \quad \min_{w,\theta} \mathcal{D}_{\mathcal{S}_q}(\hat{R}_q, R_q) & \text{where} \quad R_q = \{r_{ui}\}_{M_q \times N} \quad \hat{r}_{ui} = f_{\theta}(\tilde{\mathbf{p}}_{\mathbf{u}}, \mathbf{q}_i) \\ \\ \text{objective:} \quad \min_{w,\theta} \mathcal{D}_{\mathcal{S}_q}(\hat{R}_q, R_q) + \lambda \mathcal{L}_C(\mathbf{P}_k, \tilde{\mathbf{P}}_k) \quad \mathcal{L}_C(\mathbf{P}_k, \tilde{\mathbf{P}}_k) = \frac{1}{M_q} \sum_{u \in \mathcal{U}_k} \log \frac{\exp(\mathbf{p}_u^{\top} \tilde{\mathbf{p}}_u)}{\sum_{u' \in \mathcal{U}_q} \exp(\mathbf{p}_u^{\top} \tilde{\mathbf{p}}_{u'})} \\ \end{array}$$

regularization: consistency between two estimated embeddings for one user

Our Solutions: Inductive CF Model (ont.)

- □ Learning procedures: pretraining + adaption
- **Consider two scenarios in open-world recommendation**:
 - few-shot users: pretrained model fine-tunes on new users' data
 - zero-shot users: pretrained model directly operate on new users



Theoretical Analysis

The model possesses the same representation capacity compared to matrix factorization

The only mild condition is that key users' latent factors span the latent space

The generalization ability on new users depends on number of key users and training instances of new users

Theorem 1. Assume Eq. (3) can achieve $\mathcal{D}_{S_q}(\hat{R}_q, R_q) < \epsilon$ and the optimal \mathbf{P}_k given by Eq. (1) satisfies column-fullrank, then there exists at least one solution for \mathbf{C} in Eq. (2) such that $\mathcal{D}_{S_q}(\hat{R}_q, R_q) < \epsilon$.

$$\min_{\mathbf{P}_k, \mathbf{Q}, \theta} \mathcal{D}_{\mathcal{S}_k}(\hat{R}_k, R_k), \tag{1}$$

$$\min_{\mathbf{C},\mathbf{Q}} \mathcal{D}_{\mathcal{S}_q}(\hat{R}_q, R_q), \tag{2}$$

$$\min_{ ilde{\mathbf{P}}_q, \mathbf{Q}} \mathcal{D}_{\mathcal{S}_q}(\hat{R}_q, R_q),$$

Theorem 2. Assume 1) \mathcal{D} is L-Lipschitz, 2) for $\forall \hat{r}_{u'i} \in \hat{R}_q$ we have $|\hat{r}_{u'i}| \leq B$, and 3) the L1-norm of $\mathbf{c}_{u'}$ is bounded by H. Then with probability at least $1 - \delta$ over the random choice of $\mathcal{S}_q \in ([M_q] \times [N])^{T_q}$, it holds that for any \hat{R}_q , the gap between $\mathcal{D}(\hat{R}_q, R_q)$ and $\mathcal{D}_{\mathcal{S}_q}(\hat{R}_q, R_q)$ will be bounded by

$$O\left(2LHB\sqrt{\frac{2M_q \ln M_k}{T_q}} + \sqrt{\frac{ln(1/\delta)}{T_q}}\right).$$
(8)

Qitian Wu et al.

Inductive Collaborative Filtering

(3)

Experiments Setup

□ Dataset information:

	Dataset	# Users	#Items	# Ratings	Density	# Key/Query Users	# Training/Test Instances		
05	Douban	3,000	3,000	0.13M	0.0152	2,131/869	80,000/20,000		
explicit	Movielens-100K	943	1,682	0.10M	0.0630	123,202/13,689			
	Movielens-1M	6,040	3,706	1.0M	0.0447	5,114/926	900,199/100,021		
implicit	Amazon-Books	52,643	91,599	2.1M	0.0012	49,058/3,585	2,405,036/526,430		
implicit	Amazon-Beauty	2,944	57,289	0.08M	0.0004	780/2,164	53,464/29,440		

Evaluation Protocol:

- Explicit dataset: random split, RMSE & NDCG metric
- Implicit dataset: leave-last-out, AUC & NDCG metric, negative sampling

□ Comparison: CF models, inductive models, feature-based models

Experiments Setup

□ Implementation:

IDCF-NN: feedforward neural network as predictor

$$f_{\theta}(\mathbf{p}_u, \mathbf{q}_i) = \frac{(\mathbf{p}_u^{\top} \mathbf{q}_i + nn([\mathbf{p}_u \| \mathbf{q}_i \| \mathbf{p}_u \odot \mathbf{q}_i]))}{2} + b_u + b_i$$

• IDCF-GC: graph convolution network as predictor

$$\mathbf{m}_{u,m} = ReLU(\frac{1}{|\mathcal{N}_{u,m}|} \sum_{i \in \mathcal{N}_{u,m}} \mathbf{W}_{q,m} \mathbf{q}_i)$$
$$\mathbf{n}_{i,m} = ReLU(\frac{1}{|\mathcal{N}_{i,m}|} \sum_{u \in \mathcal{N}_{i,m}} \mathbf{W}_{p,m} \mathbf{p}_u)$$

 $f(\mathbf{p}_u, \mathbf{q}_i, \{\mathbf{p}_u\}_{u \in \mathcal{N}_i}, \{\mathbf{q}_i\}_{i \in \mathcal{N}_u}) = nn'([\mathbf{p}_u \odot \mathbf{q}_i \| \mathbf{p}_u \odot \mathbf{m}_u \| \mathbf{n}_i \odot \mathbf{q}_i \| \mathbf{n}_i \odot \mathbf{m}_u]) + b_u + b_i$

Experiments

Comparison results for explicit feedback:

- For few-shot query users, very competitive results as inductive models and very close test performance to transductive models
- For zero-shot new users, significantly outperform SOTA inductive models

			Douban			ML-100K			ML-1M			Mathad	Douban		ML-100K		ML-1M				
Method	Inductive	Feature	RM	ISE	ND	CG	RM	ISE	ND	CG	RM	ISE	ND	OCG	Method	RMSE	NDCG	RMSE	NDCG	RMSE	NDCG
			All	FS	All	FS	All	FS	All	FS	All	FS	All	FS	NIMC	0 766	0.921	1.089	0.864	1.050	0.883
PMF	No	No	0.737	0.718	0.939	0.954	0.932	1.003	0.858	0.843	0.851	0.946	0.919	0.940		0.766				1.059	
			0.101	0.7 10	0.707		0.70-	1.000	0.000	0.0 10	0.001	0.12 1.0	0.7 27		BOMIC	0.764	0.920	1.088	0.859	1.057	0.879
NNMF	No	No							0.895						FISM	1.910	0.824	1.891	0.760	2.283	0.771
GCMC	No	No	0.731	0.706	0.938	0.956	0.911	0.989	0.900	0.886	0.837	0.947	0.923	0.939	MultVAE	2.783	0.823	2.865	0.758	2.981	0.792
NIMC	Yes	Yes	0.732	0.745	0.928	0.931	1.015	1.065	0.832	0.824	0.873	0.995	0.889	0.904	IGMC	0.743	- 1	1.051	-	0.997	-
BOMIC	Yes	Yes	0.735	0.747	0.923	0.925	0.931	1.001	0.828	0.815	0.847	0.953	0.905	0.924	IDCF-NN	0.749	0.955	1.078	0.877	0.994	0.941
F-EAE	Yes	No	0.738	-	-	-	0.920	-	-	-	0.860	-	-	-	IDCF-GC	0.723	0.955	1.011	0.881	0.957	0.942
IGMC	Yes	No	0.721	0.728	-		0.905	0.997	-	-	0.857	0.956	-	-	12 01 00				01001		
IDCF-NN (ours)	Yes	No	0.738	0.712	0.939	0.956	0.931	0.996	0.896	0.880	0.844	0.952	0.922	<u>0.940</u>							
IDCF-GC (ours)	Yes	No	0.733	0.712	<u>0.940</u>	0.956	<u>0.905</u>	<u>0.981</u>	<u>0.901</u>	0.884	<u>0.839</u>	0.944	<u>0.924</u>	0.940							

Lower RMSE and higher NDCG are better

Experiments

Comparison results for implicit feedback:

- For few-shot query users, achieve SOTA results
- For zero-shot new users, significantly improvement

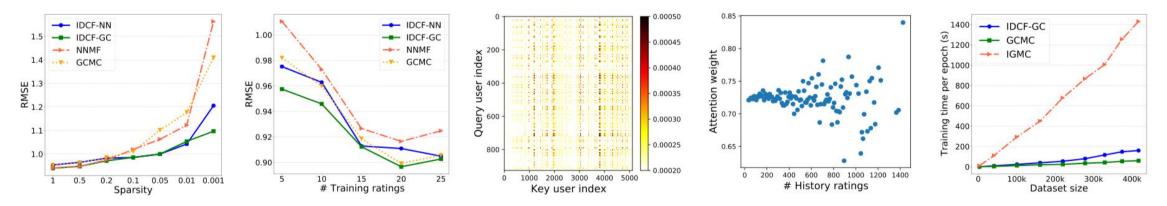
Mathad		Amazon	n-Books	s	Amazon-Beauty					
Method	AU	JC	ND	CG	AU	JC	NDCG			
	Query	New	Query	New	Query	New	Query	New		
PMF	0.917	240	0.888	42	0.779	<u>11</u>	0.769	24		
NNMF	0.919	. –	0.891	ŧ	0.790	-	0.763	3		
NGCF	0.916	-	0.896	-	0.793	-	0.775	-		
PinSAGE	0.923	-	0.901	-	0.790	-	0.775	÷		
FISM	-	0.752	-	0.792	-	0.613	-	0.678		
MultVAE	-	0.738	-	0.701	84	0.644	-	0.679		
IDCF-NN	0.944	0.939	0.928	0.920	0.792	0.750	0.783	0.774		
IDCF-GC	0.938	0.946	0.921	0.930	0.801	0.791	0.772	0.791		

Higher AUC and higher NDCG are better

Experiments (cont.)

□ Further discussions:

- Our model can exceed transductive models w,r,t, RMSE when users' training/historical ratings are sparse
- There exist informative key users that contribute to most of capacity. Key users
 with more historical ratings tend to be more important
- The training time scales linearly w.r.t. dataset size



Conclusions

Our contributions:

- propose a new inductive representation model for CF problem
- guarantee equivalent capacity to MF and can handle new users on-the-fly
- competitive results on few-shot and SOTA performance on zero-shot users

Thanks for listening!

Paper: https://arxiv.org/abs/2007.04833 Code: https://github.com/qitianwu/IDCF