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 Model-based Collaborative Filtering      Matric Factorization Model
 Basic idea:

Background for Recommendation
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 CF models cannot handle new unseen users in open-world recommendation
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Collaborative Filtering
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 Formulation of CF model for RecSys: 
• a user-item interaction matrix 
• assume user latent factors
• assume item latent factors
• consider an interaction model
• target objective

 Limitations: transductive learning
• cannot handle new unseen users

 model retraining requires additional cost
 retraining may also lead to over-fitting



Challenges for Inductive Learning

 Inductive learning can be achieved via shared mapping

 Expressiveness would be sacrificed with inductive learning
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transductive learning inductive learning
pros: sufficient expressiveness
cons: fail for new users

v. s.

shared mapping

pros: flexible for new users
cons: limited capacity/expressiveness



Related Works and Comparison
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pros:
1. advanced capacity
2. fast training/inference

cons:
1. bad generalization
2. over-parametrization

pros:
1. fewer parameters
2. enable inductive

cons:
1. limited capacity
2. user-item imbalance

pros:
1. enable inductive
2. not require features

cons:
1. limited expressiveness
2. fail for implicit feedback

incremental learning index-agnostic learning [ICLR'20]one-side learning



Our Solutions: Inductive CF Model
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 Basic idea:
• leverage one group of users to express another
• learn a latent graph over users
• message passing from existing users to new ones

Key insight: user preferences 
share underlying proximity 
that induces latent graphs

zoom in



Our Solutions: Inductive CF Model (Cont.)
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 Partition users into two groups:
• Key users: transductive learning (traditional model)

• Query users: inductive learning (new model)

model: 

learning:

model: 

learning:

where

where

where

objective:

regularization: consistency between two estimated embeddings for one user



Our Solutions: Inductive CF Model (ont.)
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 Learning procedures: pretraining + adaption 
 Consider two scenarios in open-world recommendation:

• few-shot users: pretrained model fine-tunes on new users' data
• zero-shot users: pretrained model directly operate on new users



Theoretical Analysis
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 The model possesses the same representation capacity compared to 
matrix factorization

• The only mild condition is that key users' latent factors span the latent space
 The generalization ability on new users depends on number of key 

users and training instances of new users



Experiments Setup

 Dataset information:

 Evaluation Protocol:
• Explicit dataset: random split, RMSE & NDCG metric
• Implicit dataset: leave-last-out, AUC & NDCG metric, negative sampling

 Comparison: CF models, inductive models, feature-based models
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explicit

implicit



Experiments Setup

 Implementation:
• IDCF-NN: feedforward neural network as predictor

• IDCF-GC: graph convolution network as predictor
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Experiments

 Comparison results for explicit feedback:
• For few-shot query users, very competitive results as inductive models and 

very close test performance to transductive models
• For zero-shot new users, significantly outperform SOTA inductive models
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Lower RMSE and higher NDCG are better



Experiments

 Comparison results for implicit feedback:
• For few-shot query users, achieve SOTA results
• For zero-shot new users, significantly improvement
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Higher AUC and higher NDCG are better



Experiments (cont.)

 Further discussions:
• Our model can exceed transductive models w,r,t, RMSE when users' 

training/historical ratings are sparse
• There exist informative key users that contribute to most of capacity. Key users 

with more historical ratings tend to be more important
• The training time scales linearly w.r.t. dataset size
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Conclusions

 Our contributions:
• propose a new inductive representation model for CF problem
• guarantee equivalent capacity to MF and can handle new users on-the-fly
• competitive results on few-shot and SOTA performance on zero-shot users
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Thanks for listening!
Paper: https://arxiv.org/abs/2007.04833
Code: https://github.com/qitianwu/IDCF 


