Simplifying and Empowering Transformers for Large-Graph Representations

Qitian Wu, Wentao Zhao, Chenxiao Yang, Hengrui Zhang, Fan Nie,

Haitian Jiang, Yatao Bian, Junchi Yan

Codes: https://github.com/qitianwu/SGFormer

Pitfalls of Graph Neural Networks

□ The designs of mainstream GNNs:

- Locally aggregate neighbored nodes' features in each layer
- Use neighbored nodes' embs for informative represensation

Common scenarios GNNs show deficient capability:

hard to capture longrange dependence [Dai et al., 2018]

long-range reasoning

Qitian Wu et al.

listant signals are

distant signals are overly squashed [Alon et al., 2021] *over-squashing* dissimilar linked nodes propagate wrong signals [Zhu et al., 2020]

heterophily

fail to distinguish two similar inputs [Xu et al., 2019]

expressivity

Inter-Dependent Data without Input Graphs

Construct graph \mathbf{v}_{j}^{0} \mathbf{v}_{i}^{0} \mathbf{v}_{i}^{0} \mathbf{v}_{i}^{0}

Observed data lies on lowdimensional manifold [Sebastian et al., 2021]

Physical interactions affect data generation yet are not observed [Alvaro et al., 2020]

Complex hidden structures beyond observed geometry [Xu et al., 2020]

□ GNNs require observed graphs as input:

- Solution: Pre-define a graph by some rules (e.g., k nearest neighbors)
- Limitation: the pre-defined graph is independent of downstream tasks

Message Passing Beyond Input Graphs

Preliminary: Notations

- > Each node is an instance with a label
- > Train/test on a dataset of nodes in a graph
- The graph size can be arbitrarily large

Notations for each node

- \mathbf{x}_u node (input) feature
- *yu* node ground-truth label
- \hat{y}_u node predicted label
- $\mathbf{z}_{u}^{(l)}$ node embedding at the l-th layer

Notations for the graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$

- $N = |\mathcal{V}|$ node number $E = |\mathcal{E}|$ edge number
- $\mathbf{X} = [\mathbf{x}_u]_{u=1}^N$ node feature matrix
- $\mathbf{Y} = [y_u]_{u=1}^N$ label vector/matrix
- $\mathbf{A} = [a_{uv}]_{u,v \in \mathcal{V}}$ adjacency matrix
- $\mathbf{Z}^{(l)} = [\mathbf{z}_u^{(l)}]_{u=1}^N$ node embedding matrix

Qitian Wu et al.

NodeFormer: All-Pair Attention with O(N)

Kernelized softmax message passing

$$\mathbf{z}_{u}^{(l+1)} = \sum_{v=1}^{N} \underbrace{\frac{\exp(\mathbf{q}_{u}^{\top}\mathbf{k}_{v})}{\sum_{w=1}^{N} \exp(\mathbf{q}_{u}^{\top}\mathbf{k}_{w})} \cdot \mathbf{v}_{v}}_{\sum_{w=1}^{N} \exp(\mathbf{q}_{u}^{\top}\mathbf{k}_{w})} \cdot \mathbf{v}_{v}} \quad \text{where } \mathbf{q}_{u} = W_{Q}^{(l)}\mathbf{z}_{u}^{(l)}, \quad \mathbf{k}_{u} = W_{K}^{(l)}\mathbf{z}_{u}^{(l)}, \quad \mathbf{v}_{u} = W_{V}^{(l)}\mathbf{z}_{u}^{(l)}}$$
$$\mathbf{z}_{u}^{(l+1)} = \sum_{v=1}^{N} \frac{\widehat{\kappa(\mathbf{q}_{u},\mathbf{k}_{v})}}{\sum_{w=1}^{N} \kappa(\mathbf{q}_{u},\mathbf{k}_{w})} \cdot \mathbf{v}_{v} \quad \text{where } \kappa(\cdot,\cdot) : \mathbb{R}^{d} \times \mathbb{R}^{d} \to \mathbb{R} \text{ is a positive-definite kernel}} \underbrace{O(N^{2}d)}_{\mathbf{Q}}$$
$$\underbrace{[\mathsf{Mercer's theorem]}}_{\phi(\cdot) : \mathbb{R}^{d} \to \mathbb{R}^{m} \text{ is a random feature map}}_{\mathbf{z}_{u}^{(l+1)}} = \sum_{v=1}^{N} \underbrace{\frac{\phi(\mathbf{q}_{u})^{\top} \phi(\mathbf{k}_{v})}{\sum_{w=1}^{N} \phi(\mathbf{q}_{u})^{\top} \phi(\mathbf{k}_{v})} \cdot \mathbf{v}_{v} = \underbrace{\frac{\phi(\mathbf{q}_{u})^{\top} \sum_{v=1}^{N} \phi(\mathbf{k}_{v}) \cdot \mathbf{v}_{v}^{\top}}{\phi(\mathbf{q}_{u})^{\top} \sum_{w=1}^{N} \phi(\mathbf{k}_{w})} \cdot \mathbf{v}_{v} = \underbrace{\frac{\phi(\mathbf{q}_{u})^{\top} \sum_{v=1}^{N} \phi(\mathbf{k}_{v}) \cdot \mathbf{v}_{v}^{\top}}{\phi(\mathbf{q}_{u})^{\top} \sum_{w=1}^{N} \phi(\mathbf{k}_{w})} \cdot \mathbf{v}_{v} = \underbrace{\frac{\phi(\mathbf{q}_{u})^{\top} \sum_{w=1}^{N} \phi(\mathbf{k}_{w}) \cdot \mathbf{v}_{v}^{\top}}{\phi(\mathbf{q}_{u})^{\top} \sum_{w=1}^{N} \phi(\mathbf{k}_{w})} \cdot \mathbf{v}_{v}} \underbrace{\frac{\phi(\mathbf{q}_{u})^{\top} \sum_{w=1}^{N} \phi(\mathbf{k}_{w})}{\sum_{w=1}^{N} \phi(\mathbf{k}_{w})} \cdot \mathbf{v}_{v}} = \underbrace{\frac{\phi(\mathbf{q}_{u})^{\top} \sum_{w=1}^{N} \phi(\mathbf{k}_{w}) \cdot \mathbf{v}_{v}^{\top}}{\phi(\mathbf{q}_{w})^{\top} \sum_{w=1}^{N} \phi(\mathbf{k}_{w})} \cdot \mathbf{v}_{v}} \underbrace{\frac{\phi(\mathbf{q}_{w})^{\top} \sum_{w=1}^{N} \phi(\mathbf{k}_{w})}{\sum_{w=1}^{N} \phi(\mathbf{k}_{w})} \cdot \mathbf{v}_{v}} \underbrace{\frac{\phi(\mathbf{q}_{w})^{\top} \sum_{w=1}^{N} \phi(\mathbf{k}_{w}) \cdot \mathbf{v}_{v}}{\sum_{w=1}^{N} \phi(\mathbf{k}_{w})} \cdot \mathbf{v}_{v}} \underbrace{\frac{\phi(\mathbf{q}_{w})^{\top} \sum_{w=1}^{N} \phi(\mathbf{k}_{w})}{\sum_{w=1}^{N} \phi(\mathbf{k}_{w})} \cdot \mathbf{v}_{w}} \underbrace{\frac{\phi(\mathbf{q}_{w})^{\top} \sum_{w=1}^{N} \phi(\mathbf{k}_{w}) \cdot \mathbf{v}_{w}}{\sum_{w=1}^{N} \phi(\mathbf{k}_{w})} \cdot \mathbf{v}_{w}} \underbrace{\frac{\phi(\mathbf{k}_{w}) \cdot \mathbf{v}_{w}}}{\sum_{w=1}^{N} \phi(\mathbf{k}_{w})} \cdot \mathbf{v}_$$

Qitian Wu et al., NodeFormer: A Scalable Graph Structure Learning Transformer for Node Classification, NeurIPS 2022

Qitian Wu et al.

DIFFormer: Transformers by Diffusion

$$\begin{aligned} \hat{\mathbf{S}}_{ij}^{(k)} &= \frac{f(\|\mathbf{z}_i^{(k)} - \mathbf{z}_j^{(k)}\|_2^2)}{\sum_{l=1}^N f(\|\mathbf{z}_i^{(k)} - \mathbf{z}_l^{(k)}\|_2^2)}, \quad 1 \le i, j \le N \\ \mathbf{z}_i^{(k+1)} &= \left(1 - \tau \sum_{j=1}^N \hat{\mathbf{S}}_{ij}^{(k)}\right) \mathbf{z}_i^{(k)} + \tau \sum_{j=1}^N \hat{\mathbf{S}}_{ij}^{(k)} \mathbf{z}_j^{(k)}, \quad 1 \le i \le N \end{aligned}$$

Global attention inspired by diffusivity function

$$\begin{split} \omega_{ij}^{(k)} &= f(\|\tilde{\mathbf{z}}_{i}^{(k)} - \tilde{\mathbf{z}}_{j}^{(k)}\|_{2}^{2}) = 1 + \left(\frac{\mathbf{z}_{i}^{(k)}}{\|\mathbf{z}_{i}^{(k)}\|_{2}}\right)^{\top} \left(\frac{\mathbf{z}_{j}^{(k)}}{\|\mathbf{z}_{j}^{(k)}\|_{2}}\right) \\ \sum_{j=1}^{N} \mathbf{S}_{ij}^{(k)} \mathbf{z}_{j}^{(k)} &= \sum_{j=1}^{N} \frac{1 + (\tilde{\mathbf{z}}_{i}^{(k)})^{\top} \tilde{\mathbf{z}}_{j}^{(k)}}{\sum_{l=1}^{N} \left(1 + (\tilde{\mathbf{z}}_{i}^{(k)})^{\top} \tilde{\mathbf{z}}_{l}^{(k)}\right)} \mathbf{z}_{j}^{(k)} \\ &= \left(\frac{\sum_{j=1}^{N} \mathbf{z}_{j}^{(k)} + \left(\sum_{j=1}^{N} \tilde{\mathbf{z}}_{j}^{(k)} \cdot (\mathbf{z}_{j}^{(k)})^{\top}\right) \cdot \tilde{\mathbf{z}}_{i}^{(k)}}{N + (\tilde{\mathbf{z}}_{i}^{(k)})^{\top} \sum_{l=1}^{N} \tilde{\mathbf{z}}_{l}^{(k)}}\right) \end{split}$$

Qitian Wu et al., DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, ICLR 2023

SGFormer: Simplifying Graph Transformers

O(N)

Do We Really Need Deep Attention Layers?

Prior Art

Our Model

Qitian Wu et al., Simplifying and Empowering Transformers on Large-Graph Representations, NeurIPS 2023

Qitian Wu et al.

How Powerful Are One-Layer Attentions?

Consider the k-th attention layer in Transformers:

$$\mathbf{z}_{u}^{(k)} = \underbrace{(1-\tau)\mathbf{z}_{u}^{(k-1)}}_{\text{residual link}} + \tau \sum_{v=1}^{N} \underbrace{c_{uv}^{(k)}}_{v} \mathbf{z}_{v}^{(k-1)}$$

Theorem 1 (Transformers as Graph Signal Denoising)

For any given attention matrix $\mathbf{C}^{(k)} = [c_{uv}^{(k)}]_{N \times N}$, the k-th attention layer is equivalent to a gradient descent operation with step size $\tau/2\lambda$ for an optimization problem with the cost function

$$\min_{\mathbf{Z}} \sum_{u} \|\mathbf{z}_{u} - \mathbf{z}_{u}^{(k-1)}\|_{2}^{2} + \lambda \sum_{u,v} c_{uv}^{(k)} \|\mathbf{z}_{u} - \mathbf{z}_{v}\|_{2}^{2}$$

a generalization of Dirichlet energy

Qitian Wu et al.

How Powerful Are One-Layer Attentions?

Theorem 2 (Equivalence between Multi-Layer Attentions and One-Layer Attention)

For any K-layer attention, there exists a one-layer model that induces the same denoising effect.

Observation: one-layer all-pair attention is expressive enough for propagating global information among arbitrary node pairs

SGFormer: one-layer single-head global attention + auxiliary GNN

• Simple attention with linear complexity: $\mathbf{Z}^{(0)} = f_I(\mathbf{X})$

$$\mathbf{Q} = f_Q(\mathbf{Z}^{(0)}), \quad \tilde{\mathbf{Q}} = \frac{\mathbf{Q}}{\|\mathbf{Q}\|_{\mathcal{F}}}, \quad \mathbf{K} = f_K(\mathbf{Z}^{(0)}), \quad \tilde{\mathbf{K}} = \frac{\mathbf{K}}{\|\mathbf{K}\|_{\mathcal{F}}}, \quad \mathbf{V} = f_V(\mathbf{Z}^{(0)})$$
$$\mathbf{D} = \operatorname{diag}\left(\mathbf{1} + \frac{1}{N}\tilde{\mathbf{Q}}(\tilde{\mathbf{K}}^{\top}\mathbf{1})\right), \quad \mathbf{Z} = \beta \mathbf{D}^{-1}\left[\mathbf{V} + \frac{1}{N}\tilde{\mathbf{Q}}(\tilde{\mathbf{K}}^{\top}\mathbf{V})\right] + (1 - \beta)\mathbf{Z}^{(0)}$$

• Add an auxiliary GNN at the output layer:

$$\mathbf{Z}_O = (1 - \alpha)\mathbf{Z} + \alpha \mathrm{GN}(\mathbf{Z}^{(0)}, \mathbf{A}), \quad \hat{Y} = f_O(\mathbf{Z}_O)$$

Qitian Wu et al., Simplifying and Empowering Transformers on Large-Graph Representations, NeurIPS 2023

Qitian Wu et al.

SGFormer: Scaling to Large Graphs

Challenge of training on large graphs:

The graph data cannot be loaded as a whole into a single GPU for training Mini-batch sampling strategies:

1) using local graph adjacency

2) neighbor sampling

Qitian Wu et al., Simplifying and Empowering Transformers on Large-Graph Representations, NeurIPS 2023

Qitian Wu et al.

Comparison of Existing Graph Transformers

	pos emb	multi-head	pre-processing	all-pair expressivity	complexity	largest demo of #nodes
GraphTransformer [Dwivedi et al. 2020]	R	R	R	yes	$O(N^2)$	0.2K
Graphormer [Ying et al. 2021]	R	R	R	yes	$O(N^2)$	0.3K
SAT [Chen et al. 2022]	R	R	R	yes	$O(N^2)$	0.2K
EGT [Hussain et al. 2022]	R	R	R	yes	$O(N^2)$	0.5K
GraphGPS [Rampáse et al. 2022]	R	R	R	yes	$O(N^2)$	1.0K
NodeFormer [Wu et al. 2022]	R	R	-	yes	O(N+E)	2M
SGFormer	-	-	-	yes	O(N+E)	0.1B

Experiment on Medium-Sized Graphs

Results on medium-sized node classification graphs

Dataset	Cora	CiteSeer	PubMed	Actor	Squirrel	Chameleon	Deezer
# nodes	2,708	3,327	19,717	7,600	2223	890	28,281
# edges	5,278	4,552	44,324	29,926	46,998	8,854	92,752
GCN	81.6 ± 0.4	71.6 ± 0.4	78.8 ± 0.6	30.1 ± 0.2	38.6 ± 1.8	41.3 ± 3.0	62.7 ± 0.7
GAT	83.0 ± 0.7	72.1 ± 1.1	79.0 ± 0.4	29.8 ± 0.6	35.6 ± 2.1	39.2 ± 3.1	61.7 ± 0.8
SGC	80.1 ± 0.2	71.9 ± 0.1	78.7 ± 0.1	27.0 ± 0.9	39.3 ± 2.3	39.0 ± 3.3	62.3 ± 0.4
JKNet	81.8 ± 0.5	70.7 ± 0.7	78.8 ± 0.7	30.8 ± 0.7	39.4 ± 1.6	39.4 ± 3.8	61.5 ± 0.4
APPNP	83.3 ± 0.5	71.8 ± 0.5	80.1 ± 0.2	31.3 ± 1.5	35.3 ± 1.9	38.4 ± 3.5	66.1 ± 0.6
H_2 GCN	82.5 ± 0.8	71.4 ± 0.7	79.4 ± 0.4	34.4 ± 1.7	35.1 ± 1.2	38.1 ± 4.0	66.2 ± 0.8
SIGN	82.1 ± 0.3	72.4 ± 0.8	79.5 ± 0.5	36.5 ± 1.0	40.7 ± 2.5	41.7 ± 2.2	66.3 ± 0.3
CPGNN	80.8 ± 0.4	71.6 ± 0.4	78.5 ± 0.7	34.5 ± 0.7	38.9 ± 1.2	40.8 ± 2.0	65.8 ± 0.3
GloGNN	81.9 ± 0.4	72.1 ± 0.6	78.9 ± 0.4	36.4 ± 1.6	35.7 ± 1.3	40.2 ± 3.9	65.8 ± 0.8
Graphormer _{SMALL}	OOM	OOM	OOM	OOM	OOM	OOM	OOM
Graphormer _{SMALLER}	75.8 ± 1.1	65.6 ± 0.6	OOM	OOM	40.9 ± 2.5	41.9 ± 2.8	OOM
Graphormer _{ULTRASSMALL}	74.2 ± 0.9	63.6 ± 1.0	OOM	33.9 ± 1.4	39.9 ± 2.4	41.3 ± 2.8	OOM
GraphTrans _{SMALL}	80.7 ± 0.9	69.5 ± 0.7	OOM	32.6 ± 0.7	41.0 ± 2.8	42.8 ± 3.3	OOM
GraphTrans _{UltrasSmall}	81.7 ± 0.6	70.2 ± 0.8	77.4 ± 0.5	32.1 ± 0.8	40.6 ± 2.4	42.2 ± 2.9	OOM
NodeFormer	82.2 ± 0.9	72.5 ± 1.1	79.9 ± 1.0	36.9 ± 1.0	38.5 ± 1.5	34.7 ± 4.1	66.4 ± 0.7
SGFormer	84.5 ± 0.8	72.6 ± 0.2	80.3 ± 0.6	37.9 ± 1.1	41.8 ± 2.2	44.9 ± 3.9	67.1 ± 1.1

Experiment on Large-Sized Graphs

Method	ogbn-proteins	Amazon2m	pokec	ogbn-arxiv	ogbn-papers100M
# nodes	132,534	2,449,029	1,632,803	169,343	111,059,956
# edges	39,561,252	61,859,140	30,622,564	1,166,243	1,615,685,872
MLP	72.04 ± 0.48	63.46 ± 0.10	60.15 ± 0.03	55.50 ± 0.23	47.24 ± 0.31
GCN	72.51 ± 0.35	83.90 ± 0.10	62.31 ± 1.13	71.74 ± 0.29	OOM
SGC	70.31 ± 0.23	81.21 ± 0.12	52.03 ± 0.84	67.79 ± 0.27	63.29 ± 0.19
GCN-NSampler	73.51 ± 1.31	83.84 ± 0.42	63.75 ± 0.77	68.50 ± 0.23	62.04 ± 0.27
GAT-NSampler	74.63 ± 1.24	85.17 ± 0.32	62.32 ± 0.65	67.63 ± 0.23	63.47 ± 0.39
SIGN	71.24 ± 0.46	80.98 ± 0.31	68.01 ± 0.25	70.28 ± 0.25	65.11 ± 0.14
NodeFormer	77.45 ± 1.15	87.85 ± 0.24	70.32 ± 0.45	59.90 ± 0.42	-
SGFormer	79.53 ± 0.38	89.09 ± 0.10	73.76 ± 0.24	72.63 ± 0.13	66.01 ± 0.37

Results on large node classification graphs

SGFormer can be trained in full-graph manner on obgn-arxiv

Mini-batch training for proteins, Amazon2M, pokec with batch size 10K/100K For Papers100M, using batch size 0.4M only requires 3.5 hours on a 24GB GPU

Comparison of training/inference time per epoch and memory cost

Method	Cora			PubMed			Amazon2M		
	Tr (ms)	Inf (ms)	Mem (GB)	Tr (ms)	Inf (ms)	Mem (GB)	Tr (ms)	Inf (ms)	Mem (GB)
Graphormer	563.5	537.1	5.0	-	-	-	-		-
GraphTrans	160.4	40.2	3.8	-	-	-		 0	-
NodeFormer	68.5	30.2	1.2	321.4	135.5	2.9	5369.5	1410.0	4.6
SGFormer	15.0	3.8	0.9	15.4	4.4	1.0	2481.4	382.5	2.7

Scalability test of training time/memory costs w.r.t. number of nodes

Qitian Wu et al.

Experiment Results

Obs 1: one-layer attention of SGFormer is highly competitive and efficient as well

Obs 2: one-layer attention of other (all-pair) models can also yield promising acc

Qitian Wu et al.

Conclusions

Graph Transformers have become a popular research topic in GNN community

Some open problems: 1) poor scalability (quadratic complexity) 2) lack of principled guidance for attention designs 3) inefficiency, complicated model

[1] NodeFormer: A Scalable Graph Structure Learning Transformer for Node Classification, in NeurIPS 2022

all-pair message passing with linear complexity scale to 2M nodes handle no-graph tasks Codes: https://github.com/qitianwu/NodeFormer

[2] DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, in ICLR 2023

principled global attention designs superiority for low labeled rates

Codes: https://github.com/qitianwu/DIFFormer

[3] Simplifying and Empowering Transformers for Large-Graph Representations, in NeurIPS 2023

simple attention (one-layer single-head) 30x inference speed-up scale to 0.1B nodes

Codes: https://github.com/qitianwu/SGFormer

Email: echo740@sjtu.edu.cn WeChat: myronwqt228

Qitian Wu et al.