Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach

Qitian Wu, Chenxiao Yang, Junchi Yan Department of Computer Science and Engineering Shanghai Jiao Tong University

Background for Attribute Feature Learning

General problem: learn a mapping from input features to labels

- Input data $\mathbf{x} = [x_1, x_2, \cdots, x_d]$ where x_i denotes the i-th input feature
- Assume a prediction model $f:\mathbf{x} \rightarrow y$ and objective

$$f^* = \arg\min_{f} \mathbb{E}_{(\mathbf{x},y)\sim D}[l(f(\mathbf{x}),y)]$$

Applications

- Tabular data: weather/income/usage prediction, disease diagnosis...
- Real systems: recommendation, advertisement, question answering...

Scenario 1:		age	000	edu	income	Scenario 2:	amazon.com	Recom	nended for You	user features:
Predict a	<i>o</i> ₁	<i>x</i> ₁₁	x_{12}	x_{13}	y_1	Predict whether	Amazon.com has new recommenda or told us you own.	tions for you based		
person's	02	x_{21}	x_{22}	x_{23}	y_2	a user would	BIG M	INTER CONTRACT		age/gender item features:
income with	03	x_{31}	x_{32}	x_{33}	?	click an item				category/price
aga/occ/edu				••		with attributes	The Little Big Fascinate: V Things: 163 7 Triggers Ways to Pursue Persuasion EXCELLENCE Captivatio	to Holmes [Blu- and ray]	Alice in Wonderland [Blu-ray]	<u>9</u> <u>9</u>

Challenges and Limitations of Neural Networks

□ Challenges for attribute feature learning

- New features dynamically appear (unseen features in test set)
- Scenarios: heterogeneous data sources, multi-modal data

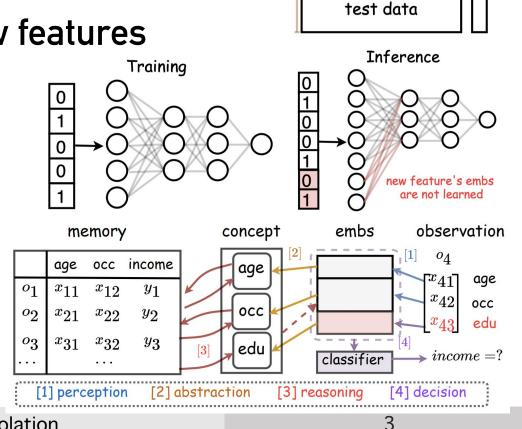
$\hfill\square$ How can neural networks deal with new features

- Retraining from scratch
 Issue: time-consuming
- Incremental learning on new features

 Issue: over-fitting & catastrophic forgetting

Inductive reasoning ability

• Humans possess inherent ability for understanding new infromation



features

training data

nstances

label

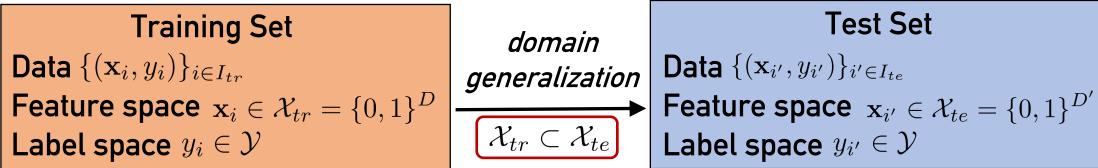
Problem Formulation

□ Preprocessing: convert raw inputs to multi-hot vectors

- Raw input $\mathbf{r}_i = [r_{i1}, r_{i2}, \cdots, r_{id}]$ where r_{im} denotes the m-th raw feature
- For categorical feature: one-hot encoding representation
- For continuous feature: first discretization then one-hot encoding

 $\mathbf{x}_i = [\mathbf{x}_i^1, \mathbf{x}_i^2, \cdots, \mathbf{x}_i^d]$ where \mathbf{x}_i^m is a one-hot vector

Open-world feature extrapolation:



□ Two cases causing feature space expansion:

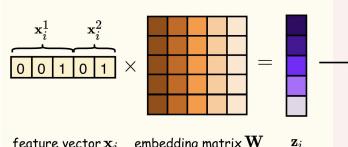
1) new raw features come, 2) unseen feature values out of known range

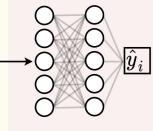
Qitian Wu et al.

Key Observation 1: Permutation-Invariance

Neural networks can be decomposed into two parts

 $\hat{y}_i = h(\mathbf{x}_i; \phi, \mathbf{W})$ $\longleftrightarrow \left\{ \begin{array}{l} \mathbf{z}_i = \mathbf{W} \mathbf{x}_i \\ \hat{y}_i = \mathrm{FFN}(\mathbf{z}_i; \phi) \end{array} \right\}$

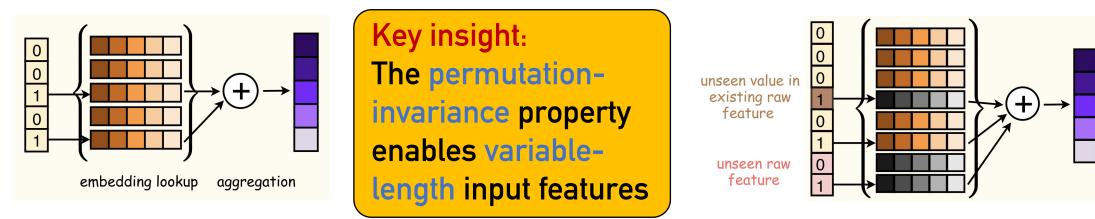




feature vector \mathbf{x}_i $\,$ embedding matrix \mathbf{W}

classification layer

Equivalent view: feature embedding look-up + embedding aggregation



Key Observation 2: Feature-Data Graph

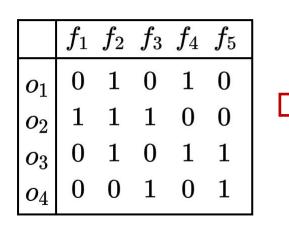
□ The input feature-data matrix can be treated as a bipartite graph

Advantage of graph representation: 1) Variable-size for features/instances 2) Missing values are allowed

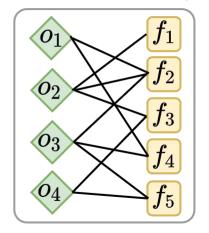
Key insight:

Convert inferring embeddings for new features to inductive representation on graphs

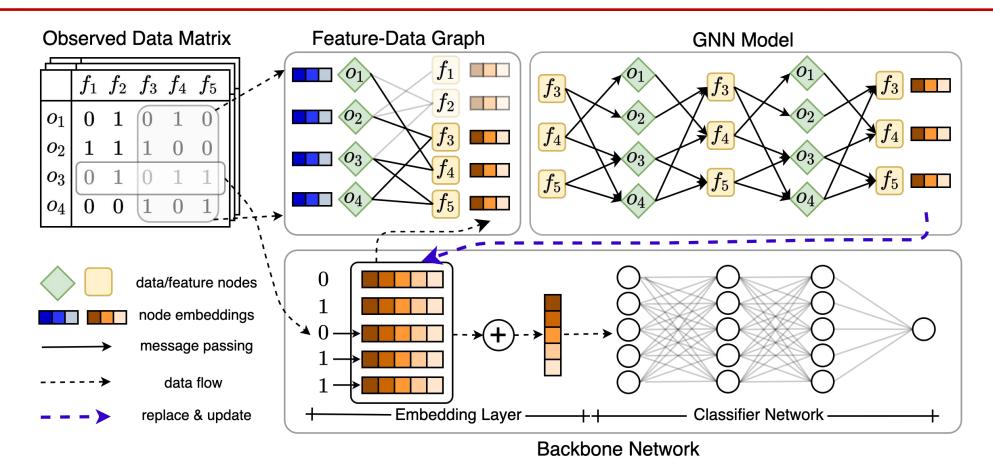
Observed Data Matrix



Feature-Data Graph



Proposed Model Framework: FATE



High-level GNN: take feature-data matrix as input and update feat. embeddings
 Low-level backbone: take each instance as input and output prediction

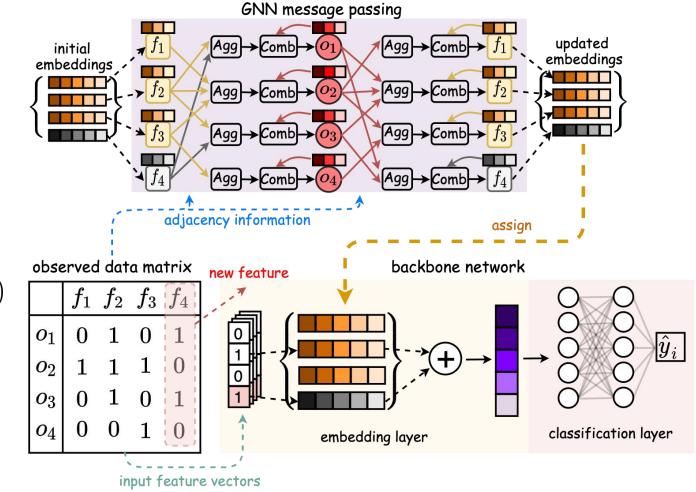
Qitian Wu et al.

Details for Proposed Model

GNN model feedforward

- Feature nodes $\{\mathbf{w}_j\}_{j=1}^D$ (initial embeddings as $\mathbf{w}_i^{(0)}$)
- Instance nodes $\{\mathbf{s}_i\}_{i=1}^N$ (initial states $\mathbf{s}_i^{(0)} = \mathbf{0}$)
- Message passing rule:

$$\mathbf{a}_{i}^{(l)} = \operatorname{AGG}(\{\mathbf{w}_{k}^{(l-1)} | \forall k, x_{ik} = 1\})$$
$$\mathbf{s}_{i}^{(l)} = \mathbf{P}^{(l)} \operatorname{COMB}\left(\mathbf{s}_{i}^{(l-1)}, \mathbf{a}_{i}^{(l-1)}\right)$$
$$\mathbf{b}_{j}^{(l)} = \operatorname{AGG}(\{\mathbf{s}_{k}^{(l-1)} | \forall k, x_{jk} = 1\})$$
$$\mathbf{w}_{j}^{(l)} = \mathbf{P}^{(l)} \operatorname{COMB}\left(\mathbf{w}_{j}^{(l-1)}, \mathbf{b}_{j}^{(l-1)}\right)$$



Details for Proposed Model

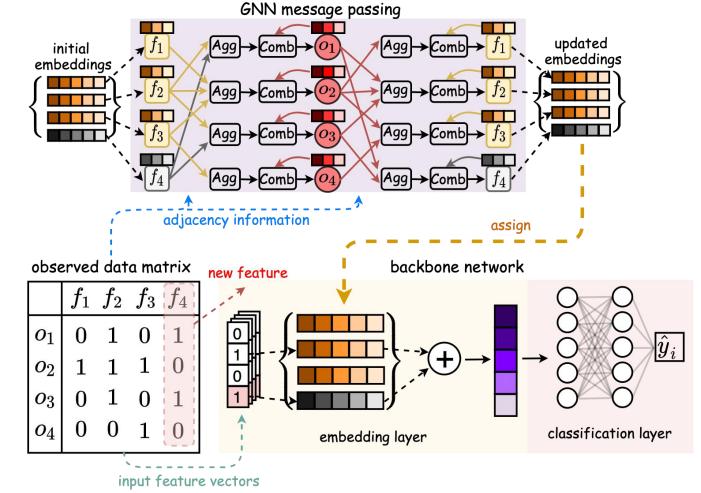
□ Entire feedforward compute

- Query feature embeddings

 □ For old features: W
 □ For new features: set as zero
- Updata feature embeddings $\hat{\mathbf{W}} = [\mathbf{w}_{j}^{(L)}]_{j=1}^{D} = g(\mathbf{W}, \mathbf{X}; \omega)$
- Assign to backbone and output predicted results

 $\hat{y}_i = h(\mathbf{x}_i; \phi, \hat{\mathbf{W}})$

Note: 1) \mathbf{X} can be either training or test data; 2) the permutation-invarance and graph representation enables arbitrarily sized \mathbf{X}



Proposed Training Approach

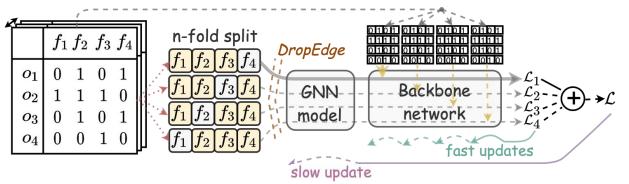
Two useful techniques for learning to extrapolate

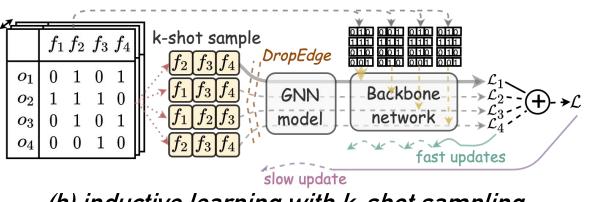
- Proxy training data
 - Self-supervised learning:
 n-fold splitting input features
 inductive learning:

k-shot sampling input features

- Asynchronous Updates

 Fast/slow for backbone/GNN
- DropEdge regularization
- Scaling to large systems
 - Mini-batches along the instance dimension (complexity O(Bd))





(b) inductive learning with k-shot sampling

Generalization Error Analysis

Key aspect: we treat input data matrix as a whole and the proposed proxy data-based training approach samples data point from

 $\mathcal{S} = \{(\mathbf{X}_1, Y_1), (\mathbf{X}_2, Y_2), \cdots, (\mathbf{X}_M, Y_M)\} \text{ where } M \propto \mathcal{O}\left(\frac{d!}{(d-k)!k!}\right)$

□ The empirical risk over training data

$$R_{emb}(h_{\mathcal{S}}) = \frac{1}{M} \sum_{m=1}^{M} \mathcal{L}(Y_m, h(\mathbf{X}_m; \psi_{\mathcal{S}}))$$

□ The generalization error can be defined as

 $R(h_{\mathcal{S}}) = \mathbb{E}_{(\mathbf{X},Y)}[\mathcal{L}(Y,h(\mathbf{X};\psi_{\mathcal{S}}))]$

□ We care about expected generalization gap over random sampling $\mathbb{E}_A[R(h_S) - R_{emp}(h_S)]$

Generalization Error Analysis (Cont.)

□ Theorem. Assume the loss function is bounded by $l(y_i, \hat{y}_i) \le \lambda$. For a learning algorithm trained on data $\{X_{tr}, Y_{tr}\}$ with T iterations of SGD updates, with probability at least $1 - \delta$, we have

$$\mathbb{E}_A[R(h_{\mathcal{S}}) - R_{emp}(h_{\mathcal{S}})] \le \mathcal{O}(\frac{d^T}{M}) + \left(\mathcal{O}(\frac{d^T}{M^2} + \lambda)\sqrt{\frac{\log(1/\delta)}{2M}}\right)$$

where $M \propto O\left(\frac{d!}{(d-k)!k!}\right)$ and k denotes the size of sampled features

Note: 1) The generalization gap depends on the number of raw features, i.e. d
2) The size M is determined by the configuration of proxy training data. (If there is more randomness, then M would be larger)

Is larger M always better? No! larger variance and larger optimization error

Experiments on UCI Datasets

Dataset	Domain	#Instances	#Raw Feat.	Cardinality	#0-1 Feat.	#Class	features label
Gene	Life	3190	60	4~6	287	3	
Protein	Life	1080	80	$2 \sim 8$	743	8	ु training data
Robot	Computer	5456	24	9	237	4	training data
Drive	Computer	58509	49	9	378	11	
Calls	Life	7195	10	4~10	219	10	.= test data
Github	Social	37700	-	\sim	4006	2	

Evaluation: training on observed features and testing on all features

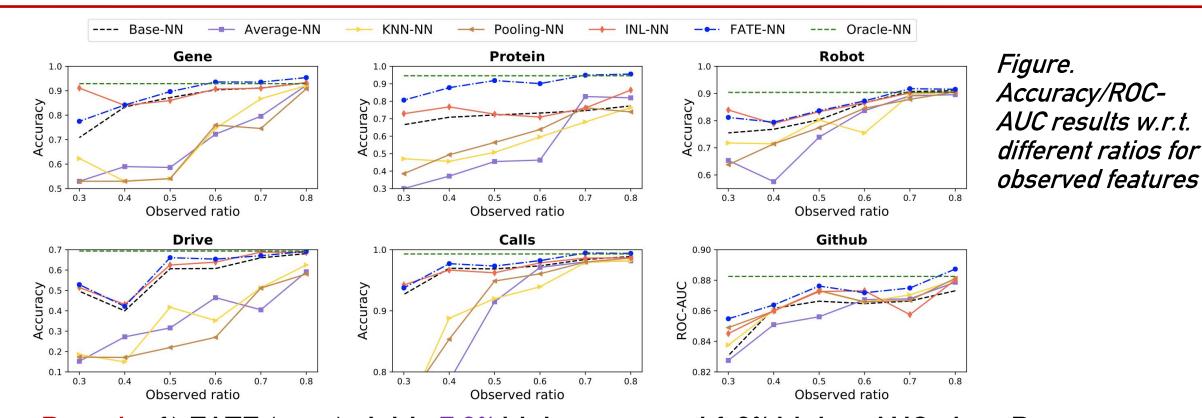
- Instance-level: random split all the instances into training/validation/test data
- Feature-level: random split all the features into observed/unobserved features

□ Baselines/Competitors:

- Base (use observed features for tr/te), Oracle (use all features for tr)
- Simple extrapolation approaches: Avg, KNN, Mean pooling
- Incremental learning (first train on observed feat, then retrain on unobserved)

□ Implementation: 3-layer NN as backbone, 4-layer GNN

Experiments on UCI Datasets



Resutls: 1) FATE (ours) yields 7.3% higher acc. and 1.3% higher AUC than Base
2) FATE achieves very close performance to Oracle (using all features)
2) FATE produces 29.8% higher acc. than baselines Avg, KNN, Pooling
3) FATE even outperforms INL in most cases with averagely 4.1% impv.

Qitian Wu et al.

Experiments on UCI Datasets

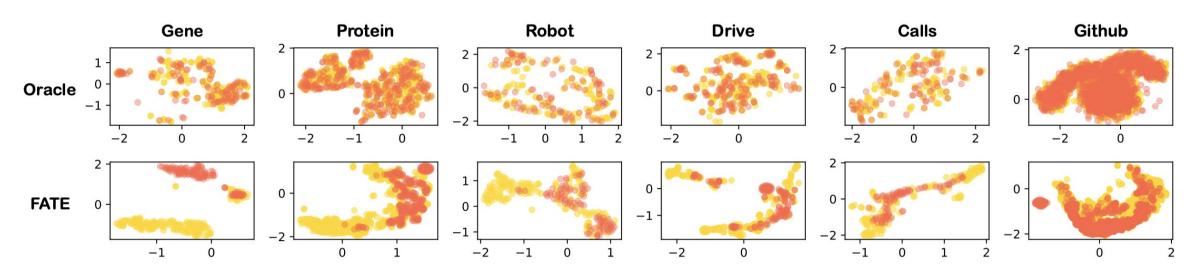


Figure. T-SNE visualization of feature embeddings produced by FATE (ours) and Oracle. Red for observed features and yellow for unobserved ones.

Key insights: 1) FATE's produced embeddings for observed/unobserved features have dissimilar distributions compared to Oracle

FATE manages to extract some informative knowledge from new features

2) The embeddings of FATE form some particular structures

FATE could further capture feature-level relations through GNN interaction

Qitian Wu et al.

Experiments on Advertisement Click Prediction

Scenario: click-through rate (CTR) prediction for online advertisement

- Goal: predict whether a user would click on a displayed ad. (binary classification)
- Input: attribute features for users/ads

□ Typical features: device id, site id, app id, ad category, app category, etc.

□ The ID features have massive values which induces large feature dimensions

Dataset	Domain	#Instances	#Raw Feat.	Cardinality	#0-1 Feat.	#Class	
Avazu	Ad.	40,428,967	22	5~1611749	2,018,025	2	
Criteo	Ad.	45,840,617	39	5~541311	2,647,481	2	

Evaluation: chronologically split all the instances into 10-fold

- Use first subset for training, second for validation and the remaining for test
- ~1.3M/~0.4M/~0.8M exclusive features in training/validation/test data in Criteo

Implementation: 3-layer NN/DeepFM as backbones

Experiments on Advertisement Click Prediction

Dataset	Backbone	Model	T 1	T2	T3	T4	T5	T6	T7	T 8	Overall
Avazu	NN	Base Pooling FATE	0.666 0.655 0.689	0.680 0.671 0.699	0.691 0.683 0.708	0.694 0.683 0.710	0.699 0.689 0.715	0.703 0.694 0.720	0.705 0.697 0.721	0.705 0.697 0.721	$\begin{array}{c} 0.693 \pm 0.012 \\ 0.684 \pm 0.011 \\ \textbf{0.710} \pm 0.010 \end{array}$
	DeepFM	Base Pooling FATE	0.675 0.666 0.692	0.684 0.676 0.702	0.694 0.685 0.711	0.697 0.685 0.714	0.699 0.688 0.718	0.706 0.693 0.722	0.708 0.694 0.724	0.706 0.694 0.724	$\begin{array}{c} 0.697 \pm 0.009 \\ 0.685 \pm 0.009 \\ \textbf{0.713} \pm 0.010 \end{array}$
Criteo	NN	Base Pooling FATE	0.761 0.761 0.770	0.761 0.762 0.769	0.763 0.764 0.771	0.763 0.763 0.772	0.765 0.766 0.773	0.766 0.767 0.774	0.766 0.768 0.774	0.766 0.768 0.774	$\begin{array}{c} 0.764 \pm 0.002 \\ 0.765 \pm 0.001 \\ \textbf{0.772} \pm 0.001 \end{array}$
	DeepFM	Base Pooling FATE	0.772 0.772 0.781	0.771 0.772 0.780	0.772 0.773 0.782	0.772 0.774 0.782	0.774 0.776 0.784	0.774 0.776 0.784	0.774 0.776 0.784	0.774 0.776 0.784	$\begin{array}{c} 0.773 \pm 0.001 \\ 0.774 \pm 0.002 \\ \textbf{0.783} \pm 0.001 \end{array}$

Table. ROC-AUC results for eight test sets (T1 - T8) on Avazu and Criteo

Resutls: FATE achieves significantly improvements over Base/Pooling with different backbones (NN and DeepFM^[1])

FATE can extrapolate for unseen features in dynamic data

[1] H. Guo, R. Tang, Y. Ye, Z. Li, and X. He. Deepfm: A factorization-machine based neural network for CTR prediction. In International Joint Conference on Artificial Intelligence, 2017.

Scalability Test for Large Datasets

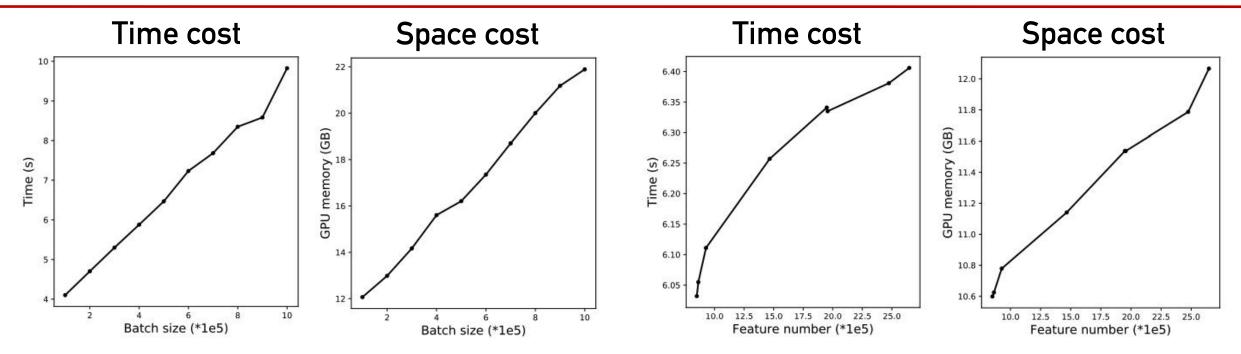


Figure 1. Scalability w.r.t. batch sizes

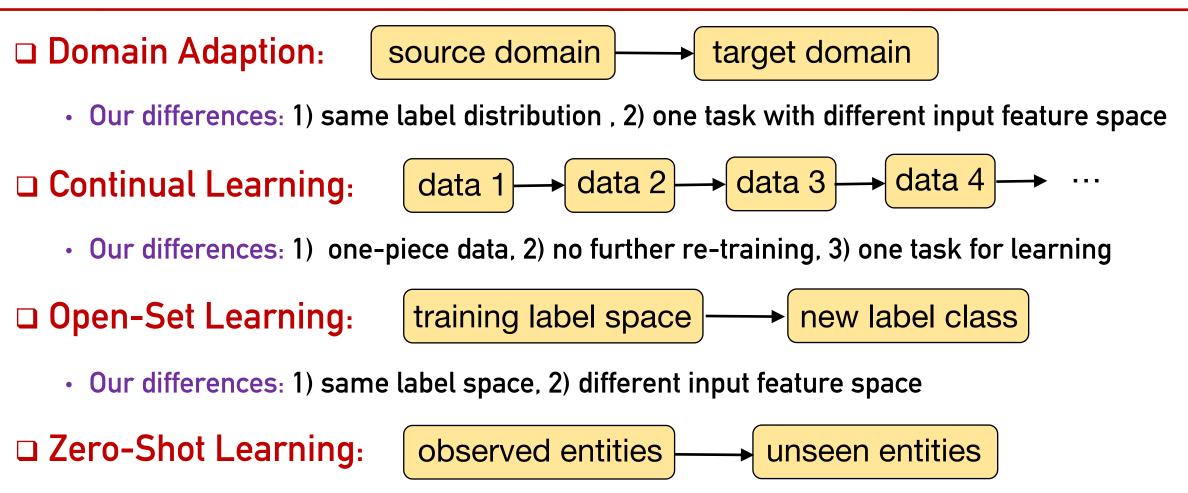
Figure 2. Scalability w.r.t. feature numbers

Resutls: FATE yields linear time/space scalability w.r.t. data and feature sizes

Promising for larger datasets and real systems

The feature-data graph representation and GNN learning induces complexity O(Bd)

Comparison with Other Learning Problems



• Our differences: 1) no extra side information, 2) different feature space

Conclusions

Our contributions: new problem setting + new method

- Formulate the problem of open-world feature extrapolation
- Propose a graph-learning approach with new training techniques
- Provide theoretical insights on the generalization performance
- Empirically verify the effectiveness, applicality and scalability of new methods

Thanks for listening!