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Motivation

Q Machine learning models perform
well in CLOSED-world situations

Perform well

a0 Real-world situations are OPEN,

dynamic and also uncertain
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Perform poorly
or even infeasible
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New Entities from Open World

0 New users/items In 2.2 2,22 ‘E > New Users
recommender systems | _* w® w¥ © Q;
a New features collected /™ ;7 A S )
by new released A A |
platforms for decisions  1[eilefee], [zl oo ooz | New Featuress
a New developed drugs p """ p New Drugs
or combinations for : th >
treatment - X o

How to handle unseen entities that are not exposed to model training?
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Out-of-Distribution Data from Open World
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item Juser  — social link .-+ interest
Graph data from multiple domains Dynamic temporal networks

a Distribution shifts cause different data distributions Pyqin (D) # Piesi (D)
0 New data from unknown distribution are unseen by training

How to guarantee desired performance on data from new distributions?
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Open-World Recommender Systems

Q Model-based Collaborative Filtering = Matrix Factorization Model

0 Basic idea:
user-item rating matrix

factorize {

user embeddings —__
item embeddings —

reconstruction matrix

1 CF models cannot handle new unseen users in open-world recommendation

~

user clicking history ( embedding matrix
.. M ‘ lfﬁ > #one-hot encoding user embedding
training reconstruction us [olo[1]0] X =
A= k
user clicking history prediction [ augmented
- N embedding matrix
. . new user's new user's
serving o existing users # one-hot encoding embedding
Il B 6 E) > us [oJoJoJo1] X = 7
@ s — ! nNew user
3R L
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Collaborative Filtering

Q Formulation of CF model for RecSys:
* a user-item interaction matrix R = {ry; } prxn
assume user latent factors P = {p, }rrx4

assume item latent factors Q =
consider an interaction model 7,,; =

E L T"LL’L? T"LL’L

target objective £(R, R)
(u,i)

{di} N xd
— f@(pua qz)

a Limitations: transductive learning

» cannot handle new unseen users
0 model retraining requires additional cost
O incremental training may lead to over-fitting

Qitian Wu
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Challenges for Inductive Learning

a Inductive learning: use user features as input

weight matrix new user's new user's
feature vector user embedding feature vector embedding
a, X — ay X = | |
I B
age occ. . shared mapping .- "
Q Issue: expressiveness would be sacrificed with inductive learning
4 ) 4 )
J1 /
u]_ % pul au1 — pu1
Vl Sl
f2 f
U9 — p’u,g a’LLQ — Pus
\ _/ \
transductive learning inductive learning
pros: sufficient expressiveness pros: flexible for new users
cons: fail for new users cons: limited capacity/expressiveness
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Inductive Collaborative Filtering Model

Q Basic idea:

* leverage one group of users to express another

* learn a latent graph over users

* message passing from existing users to new ones

key user's embedding matrix key user's
one-hot encoding embedding
u [oJoJ1Jo] X = HET T
user-item ratings v i
5[lo[2]a]ok--& .
o = 7% user-user relation
2101014110k~ -V |earni [
2 [+, .75 learning model
3141003 K 5%
5lofo|2]5 k> s query user's
P embeddin
9_12; 0 g ; 0101 KM user-user relation —>.:|:|:|g:]
=9 Q]5 5> learning model

zoom in

Key insight: user preferences
share underlying proximity
that induces latent graphs

(

N

. key user N\
key user one-hot id sribad dig meta latents KV
tjojo|o| o> >TTT+H—> & A
K/V g embedding
ojf1|jojo|of > TF>TTTFH——>» g
K/V g
ofofofo] 1| > >TTT+H— &
query user rating vector Q T
5(0|3(0|0]|2
{ \ item
0 O OO pedings
A 4 query user
initial state
_ J

J

Qitian Wu, Hengrui Zhang, Xiaofeng Gao, Junchi Yan, Hongyuan Zha, “Towards Open-World Recommendation: An
Inductive Model-based Collaborative Filtering Approach”, in ICML'21
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Our Solutions: Inductive CF Model (Cont.)

a Partition users into two groups: |u,| = M, |U,| = M,
» Key users: transductive learning (traditional model)
model:  Pr={pulmixa Q={di}nxa Tui = fo(Pu,qi)
learning: min Dg, (PbkaRk) where Ry = {ru;fr, =N

P;,Q,0
: ) : : edge weights in a
* Query users: inductive learning (hew model) latent user-user graph

=
model: Puw =C,/Pr |cyu= where d,/ = q;

u u [ Zuoéuk eT [quu’ $b WkpuO] i;fu/
learning: migl Ds,(R,, R,) where  Rq={ruilu,xn Tui = fo(Pu,q:)

w,

. 2 = = 1 exp(pr)u)
objective: minDg (R4, R +[>\£ P.. P ] Lo(Pr,Px) = — log = =
J w,0 Sq( ! q) C( i k) ( ) M U;k ZU’Guq eXp(pqu,)

. - - q
regularization: consistency between two

estimated embeddings for one user

Qitian Wu, Hengrui Zhang, Xiaofeng Gao, Junchi Yan, Hongyuan Zha, “Towards Open-World Recommendation: An
Inductive Model-based Collaborative Filtering Approach”, in ICML'21
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Theoretical Analysis

a The model possesses the same representation capacity compared to
matrix factorization

* The only mild condition is that key users’ latent factors span the latent space

a The generalization ability on new users depends on number of key
users and training instances of new users

Theorem 1. Assume Eq. (3) can achieve Ds, (R, R;) < Theorem 2.  Assume 1) D is L-Lipschitz, 2) for V7,; €
€ and the optimal P}, given by Eq. (1) satisfies column-full- Ry we have |f;| < B, and 3) the LI-norm of cy is
rank, then there exists at least one solution for C in Eq. (2) bounded by H. Then with probability at least 1 — 6 over
such that D, ( R, R,) < e the random choice of Sq € ([{\Jq] x [N])Ts, it holds that for
_ . any Ry, the gap between D(Ry, R,) and Ds,(Ry, Ry) will
pﬁfﬁfe Ds,. (Rk, Rk), (1) be bounded by
mi(g_ ng(ﬁ’,q, Rl (2)

C [2M,In My, | [In(1/6)
x 2LHB | —L—= .
lglig Ds, (Rq; Rq), (3) “ ( T, '\ T ®)

Qitian Wu, Hengrui Zhang, Xiaofeng Gao, Junchi Yan, Hongyuan Zha, “Towards Open-World Recommendation: An
Inductive Model-based Collaborative Filtering Approach”, in ICML'21
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Experiment Results

Q Interpolation for few-shot users: competitive as Oracle models
Q Extrapolation for zero-shot users: significantly outperform SOTA

Inductive models

Douban ML-100K ML-1IM

Method Inductive Feature RMSE NDCG RMSE NDCG RMSE NDCG

Al FS Al FS Al FS All FS All FS All FS
PMF No No 0.737 0.718 0.939 0.954 0.932 1.003 0.858 0.843 0.851 0.946 0.919 0.940
NNMF No No 0.729 0.705 0.939 0.952 0.925 0.987 0.895 0.878 0.848 0.940 0.920 0.937
GCMC No No 0.731 0.706 0.938 0.956 0.911 0.989 0.900 0.886 0.837 0.947 0.923 0.939
NIMC Yes Yes 0.732 0.745 0.928 0.931 1.015 1.065 0.832 0.824 0.873 0.995 0.889 0.904
BOMIC Yes Yes 0.735 0.747 0.923 0.925 0.931 1.001 0.828 0.815 0.847 0.953 0.905 0.924
F-EAE Yes No 0738 - - - 0920 - - - 0860 - - -
IGMC Yes No 0.721 0.728 - - 0905 0997 - - 0.857 0.956 - -
IDCF-NN (ours)  Yes No 0.738 0.712 0.939 0.956 0.931 0.996 0.896 0.880 0.844 0.952 0.922 0.940
IDCF-GC (ours)  Yes No 0.733 0.712 0.940 0.956 0.905 0.981 0.901 0.884 0.839 0.944 0.924 0.940

Query user index
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+4.0% (resp. +17.4%) impv. of RMSE (resp. NDCG) on new users

Qitian Wu, Hengrui Zhang, Xiaofeng Gao, Junchi Yan, Hongyuan Zha, “Towards Open-World Recommendation: An
Inductive Model-based Collaborative Filtering Approach”, in ICML'21
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Attribute Feature Learning

Q General problem: learn a mapping from input features to labels

* Input data x = |x1, 29, -+ , 4| Where x; denotes the i-th input feature
« Assume a prediction model f : x — ¥ and objective

f* = arg m}nE(x,y)ND[l(f(X)v y)]

Q Applications

 Tabular data: weather/income/usage prediction, disease diagnosis...
* Real systems: recommendation, advertisement, question answering...

Scenario 1: age occ edu income Scenario 2: amasoncom Aecommended for You

Predict a o1 |211 @12 213 Y1 Predict whether = ;;2;;:;”;.65:
person's 09 | za1 22 x93 Y2 a user would item feature"s;:
income with  [o3[z31 232 233 2 click an item category/price...
aga/occ/edu with attributes

Qitian Wu Generalization and Extrapolation on Graphs 12



Problem of Feature Extrapolation

a Limitations for neural networks eatures  label rainin _—
fa 7711 [0] O o] O
: 0O O
Retraining from scratch 3 mmmgdm7 1 000 1 S8\,
time consuming g / o0 O O O 00 0 0
* Incremental learning |2 41 ‘1’ 8 OO 0] &)/ reu sea's v
over-fitting test data | 1l O
0 Open-world feature extrapolation:
Training Set domain Test Set
Data {(XZ7 yi)}iEItr genera[ization Data {<Xi’7 yi')}i’efte /
Feature space x; € &,, = {0,1}” —»| Feature space x; € X, = {0,1}"
Label space v: €V [Xtr C Xte] Label space yir €V

0 Two cases causing feature space expansion:
1) new raw features come, 2) unseen feature values out of known range

Qitian Wu Generalization and Extrapolation on Graphs 13



Key Observation 1: Permutation-Invariance

a Neural networks can be decomposed into two parts

A~ . . O O
Y — h(X@', va ) ﬁxfl . xf: 8 8 ,
[ololiTol1] x B i

{ WXZ 0jO|1]0]|1 O 8
y’L T FFN ZZ’ ¢) feature vectorx; embedding matrix W Z; classification layer

a Equivalent view: feature embedding look-up + embedding aggregation
)

A o] | )
- (EErT T Key insight | h
0 -:Ijj @_} The permUtatlon- unseen value in E
1 —}-—) ) : existing raw 1 > _P@__)
o |EEI | Invariance property feature |y (A |
1 J enables variable- 1 | BEErT /
embedding lookup  aggregation \length |nput features ) lil| \;-:Dﬁ

Qitian Wu Generalization and Extrapolation on Graphs 14



Key Observation 2: Feature-Data Graph

a The input feature-data matrix can be treated as a bipartite graph

" Feature nodes Fy = {f;}71,

Instance nodes I, = {0;}i-,

Input data matrix
Xy = [Xilier,, € {0,137 ) -

_ Adjacency matrix X;,

Advantage of graph representation:

1) Variable-size for features/instances Observed Data Matrix Feature-Data Graph
2) Missing values are allowed fife fs fu fs 01> fi
‘Key insight: ) o0 1.0 170 j‘> 02 f2
Convert inferring embeddings for o1 1100 P f3
new features to inductive 03 g (1) (1) (1) 1 . fa
representation on graphs 04 4 fs

)

Qitian Wu Generalization and Extrapolation on Graphs 15



Feature Extrapolation Network

Observed Data Matrix | Feature-Data Graph | GNN Model
— . Ok._; f ) 0 0 Reason,ng
fife fs fo fs .7 N4 - fs % f3 Vv f3| IO .
- f> BC High-level
o1{0 1 (0 1 O W] 02 02) 03 del f
wl1 111 00 ) f3 || fa by fa f4 B model for
2\, i ) W] O3 AR = ©3) 03 feature emb
04| 0 0 [T 0 1| ,/EEOQL f5) HEO 0y 0y .
— -“\ —— - =-----o- ? ______ U4
\ K ‘, -—mEm=m=mE=EE=E===== P L.
‘ rediction
data/feature nodes ‘\‘ 0 | BECTT] O“ O O
B BT node embeddings 1 | EETT] Qs OsRHO) Low-level
om0 o O O O | model for
———  message passing O 5 O 5 O o
1 —pEETT] prediction
______ > data flow 1—BE 1] O O O
- - replace & update | -I—L Embed::ling Layer 4 Classifier Network }

Backbone Network

Qitian Wu, Chenxiao Yang, Junchi Yan, “Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach”, in NeurlPS'21
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Details for Proposed Model

6NN message passing

Q GNN model feedforward

initia ¥ fi . updated

e Feature nodes {Wj}le embeddlmgs . 1 «_embeddings
(initial embeddings as w'") {m%"h [ ne ‘° {,-:::m}
J [ -»i?» .»-»fgf (e

* Instance nodes {s;};
0
(initial states s( ) — O) ______ A SO
! adjacency information assian
* Message passing rule: : :

observed data matrix backbone network

l l—1 new feature
8‘7(;) — AGG({Wl(c )‘Vkvxik =1}) h o fsifal . 8
) _ pW (I-1) ,(-1) o1l0 10 1] g
S, COMB( ,a, ) ol1 110 8 Yi
() _ (1-1) o o3(0 1 0 1 O
b' o AGG({S ‘Vk xjk o 1}) o400 0 1 0 embedding layer classification layer

w = PO o (wl'~), h0-1)

Qitian Wu Chenxiao Yang, Junchi Yan “Towards Open- World Feature Extrapolation: An Inductive Graph Learning
Approach”, in NeurlPS'21
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Details for Proposed Model

Q Entire feedforward compute ™~ wn "UTCRET =
. ; crieiings e >t I oiiings
Query feature embeddings . f-» ) — -
-y J2 £ -—) 2 ==
O For old features: W {%% - {E}
O For new features: set as zero W \*f?’ / egh>ont 7 ®_‘ .*W* _ s
- Updata feature embeddings ‘.* -*ﬂ
W = [WE'L)]?:l — g(W, X, (,U) El adjacency information | | assign
- Assign to backbone and output °bs"”;f" ;“*“;“*;" R e .
predicted results o e
! A ! NG
yi = h(xi; 0, W) ol1 1 10 8 Y;
Note: 1) X can be either training or test data;[?3| 0 1 0 1 O
2) the permutation-invarance and graph |0 0 1 g embedding layer classification layer

representation enables arbitrarily sized X

Qitian Wu, Chenxiao Yang, Junchi Yan, “Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach”, in NeurlPS'21
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Feature Extrapolation Network: Training

a Two useful techniques for learning to extrapolate

* Proxy training data LR e
- - fuf fonl] foldseit . EEEEEHEEREE
O Self-supervised learning: — o | AAnIAL), e B .
- 1+ H o211 110 ' ,";' 6NN [ Backbone *é} r
n-fold splitting input features oo 10 1 || GBI | model e R O
O Inductive learning: 04/ 0 0 1 0 il {A]h]flfa)"

slow update

k-shot sampling input features , , . o
(@) Self-supervised learning with n-fold splitting

* Asynchronous Updates

O Fast/slow for backbone/GNN A= o 0 i e

f1 2 f3 fa||| K-shot sample T B B B
IR RR .,DropEdge R [ RE GH
- 1 o1l0 10 1. >
a DropEdge regularization ool 1 11 0[] BB enn | Backbore | ERNGy .
o3/ 0 101 “ \“, model network :fi:"
I o400 10 5
a Scaling to large systems ! | e

Slow update

 Time/space complexity O(Bd)

(b) Inductive learning with k-shot sampling

Qitian Wu, Chenxiao Yang, Junchi Yan, “Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach”, in NeurlPS'21
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Experiments on UCI Datasets

---- Base-NN

—=— Average-NN
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Figure.
Accuracy/ROC-
AUC results w.r.t
different ratios for
observed features

Q FATE (ours) yields 7.3% higher acc. than Base (without using new features)

Q FATE produces 29.8% higher acc. than baselines Avg, KNN, Pooling

Qitian Wu, Chenxiao Yang, Junchi Yan, “Towards Open-World Feature Extrapolation: An Inductive Graph Learning

Approach”, in NeurlPS'21

Qitian Wu

Generalization and Extrapolation on Graphs
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Experiments on Advertisement Click Prediction

Table. ROC-AUC results for eight test sets (T1 - 18) on Avazu and Criteo

Dataset | Backbone | Model | TI T2 T3 T4 T5 T6 T7 T8 Overall
Base 0.666 0.680 0.691 0.694 0.699 0.703 0.705 0.705 0.693 4+ 0.012
NN Pooling | 0.655 0.671 0.683 0.683 0.689 0.694 0.697 0.697 0.684 £ 0.011
Avazu FATE | 0.689 0.699 0.708 0.710 0.715 0.720 0.721 0.721 0.710 &+ 0.010
Base 0.675 0.684 0.694 0.697 0.699 0.706 0.708 0.706 0.697 £ 0.009
DeepFM Pooling | 0.666 0.676 0.685 0.685 0.688 0.693 0.694 0.694 0.685 &+ 0.009
FATE 0.692 0.702 0.711 0.714 0.718 0.722 0.724 0.724 0.713 +£0.010
Base 0.761 0.761 0.763 0.763 0.765 0.766 0.766 0.766 0.764 £+ 0.002
NN Pooling | 0.761 0.762 0.764 0.763 0.766 0.767 0.768 0.768 0.765 £ 0.001
Criteo FATE 0.770 0.769 0.771 0.772 0.773 0.774 0.774 0.774 0.772 £+ 0.001
Base 0.772 0771 0772 0.772 0.774 0774 0.774 0.774 0.773 £ 0.001
DeepFM Pooling | 0.772 0.772 0.773 0.774 0.776 0.776 0.776 0.776 0.774 £ 0.002
FATE 0.781 0.780 0.782 0.782 0.784 0.784 0.784 0.784 0.783 + 0.001

QO FATE achieves significantly improvements over Base/Pooling with different

backbones (DNN and DeepFMIil)

Qitian Wu, Chenxiao Yang, Junchi Yan, “Towards Open-World Feature
Extrapolation: An Inductive Graph Learning Approach”, in NeurlPS'21

Qitian Wu Generalization and Extrapolation on Graphs

[11 H. Guo, R. Tang., Y. Ye, Z. Li, and X. He.
Deepfm: A factorization-machine based
neural network for CTR prediction. In
International Joint Conference on
Artificial Intelligence, 2017.
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Distribution Shifts on Graphs

0 Out-of-distribution data are ubiquitous in real-world situations
QO ML systems are difficult to generalize to new test distributions
a Unlike images, 00D samples are ambigous for graph-structured data

.
— & :
4 a‘ =
=]
 §
3 ¥
o &
-

Y
SR
—

Out-of-distribution samples can be clearly
defined for image data 00D samples?

Qitian Wu Generalization and Extrapolation on Graphs 22



Problem Formulation

a Graph notation: Agraph G = (A4, X), adjacency matrix A = {a,,|v,u € V}
node features X = {z,|v € V'}, node labels Y = {y,|v € V'}

p(G,Yle) = p(Gle)p(Y|G,e)
where e denotes environment (that affects data generation)
a How to deal with the non-IID nature of nodes in a graph?

~

=10 ari

p(?(g)p(l’\ﬁ) g/g) 'ya@; 'ya\c/g yc\(!/ yd\(g

Gle)- (Y|G (Gle) - G, =G, e Decompose a graph into pieces
p(Gle)- (Y|G,e) p(Gle) ﬂl;p(y\ )  Opcomposea

Qitian Wu Generalization and Extrapolation on Graphs 23



Problem Formulation

a Graph notation: Agraph G = (A4, X), adjacency matrix A = {a,,|v,u € V}
node features X = {z,|v € V'}, node labels Y = {y,|v € V'}

p(G,Yle) = p(Gle)p(Y|G,e)
where e denotes environment (that affects data generation)
Q Out-of-distribution generalization on graphs:

. 1
mf;n réleag( EGNp(G|e:e) m Z Ey~p(y|Gv=Gv,e=€) [l(f(G’U)? y)]
veV

» A graph G can be divided into pieces of ego-graphs { (G, Yv) fvev

« The data generation process: 1) the entire graph is generated via G ~ p(Gle),
2) each node's label is generated viay ~ p(y|Gv = G, e)

 Denote £ as the support of env. and [(-, ) as the loss function

Qitian Wu Generalization and Extrapolation on Graphs 24



Causal Invariance Principle

There exists a sequence of (non-linear) functions {1}/, where h; : R% — R%and a permutation-
invariant functionI" : RY" — R%, which gives a node-level readout 7, = r{) that is calculated in a

recursive way: ) = T{r=Yjw e NV U{u}}fori=1,---,Land 7Y = h}(z,) if ue N" . Denote
I' as a random variable of 7y and it satisfies | S inspired by Weisfeiler-Lehman lest

- Invariance condition: p(y|r,e) = p(y|r)
- Sufficiency condition: y = c*(r) + n, wherec” is a non-linear function, n is a random noise. J

Intuitive Explanation:

There exists a portion of causal
information within input ego-graph for

causal features
prediction task of each individual node

The “causal” means two-fold properties: (' non-causal features

1) invariant across environments
2) sufficient for prediction

Qitian Wu Generalization and Extrapolation on Graphs 25



Motivating Example

We consider a linear 2-dim toy example and 1-layer GNN model
Data generation: 2-dim node features =, = [x,, z>] and node label ¥»

1 1
Yo =TT D Tu T Ty =TT D Yutnpte
Nl Jen Nl Jex

where n; and »? are standard normal noise and € is a random variable with zero
mean and non-zero variance dependent on the environment.

Model: a vanilla GCN as the predictor model:

o example for
. 1 ) 5 wcn,|  Cllation network
y’U — Z 9139 u + 9233' U e e R LR
‘ v ‘ wEN, X1 : publish avenue

| X2 : citation index

The ideal solution is [01,02] = [1,0]

Y : paper's sub-area

" e :time of publication

r! causal features 22 non-causal (spurious) features

Qitian Wu Generalization and Extrapolation on Graphs 26



Theoretical Motivation

Let the risk under environment € be R(e Wl Z y1Gu=G, (5 — yull3).

vEV 14 g 1
The unique optimal solution for objective memE [R(e)] would be [01,02] = [2 n Zg, 2+ o2

o. > 0 denotes the standard deviation of € across environments.

| where

The objective mein Ve|[R(e)] reaches the optimum if and only if [0;,62] = [1, 0]

0 Implication from Prop 1: minimizing the expectation of risks across environments would
inevitably lead the model to rely on spurious correlation

0 Implication from Prop 2: if the model yields equal performance on different environments, it
would manage to leverage the invariant features

Qitian Wu, Hengrui Zhang, Junchi Yan, and David Wipf, “Handling Distribution Shifts on Graphs: An Invariance
Perspective”, in ICLR'22
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Explore-to-Extrapolate Risk Minimization

2 Initial version: jointly minimize the expectation and variance of risks

mginV o[ L(GC, Y 0)] + BES[L(G®,Y®; 0)]

Z I(fo(Gy),y;) and S Is a trading hyper-parameter.

vE Ve

where L(G¢,Y¢;0) =

\V\

Key issue: no/ambiguous environment in observed data

2 Final version: adversarial training multiple context generators
m@inVar({L(ng(G), V:0):1<k<K})+ —= ZL Juw: (G

s. t. [w], - ,wy| = arg max Var({ L(gu, (G), Y 9) 1<k<K})

where L(9w, (G),Y;0) = L(G*, Y 0) W, Zl fo(GE),y0).

veV
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Explore-to-Extrapolate Risk Minimization

minVar({L (g, (). Y10) : 1 € k < K})+ 23" Ligus (€).Y:0

a5
I
—

st [wh, - wi :[arg max Var({L(gw, (G),Y:;0):1 <k < K})J adve_rsarially train
Wi, WK multiple data generators

L(gu, (G),Y30) = L(GF,Y;0) = — > 1(fo(GE), yo)

O Model instantiations:

Generator 1
GNN-Model

L(G,, Y}}
L(Gy,Y) ¢+ —
L(Gk,Y)

O....s

4

+ fo(+) : GNN (output node-level prediction)

Context
Generator 2

Input Data
(G,Y)

* Jur () graph editer (output a new graph via add/

o) K
delete edges) V(UG V) | 3G e
- Training algorithm: REINFORCE for graph editer Explore A s Eviranalaia
+ gradient descent for GNN predictor —» Forward Data Flow — ----- » REINFORCE Update  -----» Gradient Update

Qitian Wu, Hengrui Zhang, Junchi Yan, and David Wipf, “Handling Distribution Shifts on Graphs: An Invariance
Perspective”, in ICLR'22
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Theoretical Analysis

For (Gv,r) that satisfies Assumption 1, there exists a random variable T such that Gy = m(r,T)
where m is a functional mapping. We assume that p(y|r, e = e¢)would arbitrarily change across
environments e € £.

Intuitive Explanation: two portions of features in input data, one is domain-invariant for prediction
and the other contributes to sensitive prediction that can arbitrary change on environments.

If we treat the predictive distributiong(y|z) as a variational distribution, then 1) minimizing the
expectation of risks contributes to max I(y;z), i.e., enforcing the sufficiency condition on Z

q(z|Gv

for prediction, and 2) minimizing the variance of risks would play a role forq(lef|lg1 ) I(y;elz) je.

enforcing the invariance condition p(y|z, e) = p(y|z) .

y

Qitian Wu, Hengrui Zhang, Junchi Yan, and David Wipf, “Handling Distribution Shifts on Graphs: An Invariance
Perspective”, in ICLR'22
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Theoretical Analysis (Cont.)

Under Assumption 1 and 2, if the GNN encoder ¢(z|G+) satisfies that 1) I(y;e|z) = 0 (invariance
condition) and 2) ] (y; z) is maximized (sufficiency condition), then the model {* given by E, [y|z]
Is the solution to the formulated OOD problem.

From information-theoretic perspective,

1) training error D1, (pe(Y|Gv)l4(¥|Gv)) < I(Gv; y|z) + Drr(pe(y|2)|la(y|z))
2) 00D generalization error Dk 1,(per (y|Gv)[|a(y|Gv)) < Ie/(Gviy|2z) + Dir(pe (¥12)|la(y|2))

Optimizing the learning objective with training data can minimize the upper bound for OOD error

measured by Dx 1. (pe (y|Gv)||¢(y|Gv) on condition that I (Gv;y|z) = I.(Gy;y|2).

Qitian Wu, Hengrui Zhang, Junchi Yan, and David Wipf, “Handling Distribution Shifts on Graphs: An Invariance
Perspective”, in ICLR'22
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Experiment Setup

Dataset Distribution Shift #Nodes #Edges #Classes  Train/Val/Test Split Metric
2,703 5,278 10 Domain-Level Accuracy
7,650 119,081 10 Domain-Level Accuracy
- 1,912-9498 31,299 - 153,138 2 Domain-Level ROC-AUC
k-10 - 769-41,536 16,656 - 1,590,655 2 Domain-Level Accuracy
i : Temporal Eynlution 203,769 234,355 2 Tima-Aware F1 Score
OGB-Arxiv 169,343 1,166,243 40 Time-Aware Accuracy

a Evalution protocol of out-of-distribution generalization
 Training on limited data and testing on new unseen data
» Differences between training and testing distributions

a Three types of distribution shifts on graphs
 Artificial transformation: add synthetic spurious node features to data
* Cross-domain transfers: training and testing within different graphs
» Jemporal evolution: training in the past and evaluation in the future
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Results on Artificial Transformation

100
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(c)
Figure. Experiment results on Cora with artificial spurious features. (a) Test accuracy on eight testing
graphs (with different environment ids). (b) Training accuracy during inference w/ and w/o using
spurious features. (c) Averaged test accuracy using different GNNs for synthetic data generation.

Accuracy

]
(4; ]

N
o

0 Setup: use a randomly initialized GCN to generate spurious node features, use
another GCN to generate ground-truth node labels based on input node features

0 Results (when using GCN as the predictor backbone):
* EERM (ours) outperforms empirical risk minimization (ERM) on eight test graphs
 EERM can reduce the dependence on spurious features than ERM
 EERM is robust to synthetic data generated by different GNNs
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Results on Cross-Graph Transfer

65 65
== ERM mm ERM == ERM
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Figure. ROC-AUC results on Twitch-Explicit when training on one graph and testing on others with different GNN
predictors (GCN, GAT and GCNI)

Table. Accuracy results on Facebook-100 when using different configurations of training graphs and testing on
new graphs Penn, Brown and Texas

Training graph combination | Eenn R T

| ErM EERM | ERrRM EERM | ErRM EERM

John Hopkins + Caltech + Amherst | 5048 £1.09 = 50.64 £ 025 | 5453 +393 56.73 £023 | 5323 +449 5557 £ 0.75
Bingham + Duke + Princeton 50.17 £ 0.65 50.67 £ 0.79 | 5043 +4.58 52.76 +340 | 50.19 4+ 581 @ 53.82 + 4.88
WashU + Brandeis+ Carnegie 50.83 £ 0.17 IEISEEEREREN 54.61 - 4.75 BESESEERES RN  56.12 + 0.42

EERM achieves up to 7.0% (resp. 7.2%) impv. on ROC-AUC (resp. accuracy) than ERM

Qitian Wu, Hengrui Zhang, Junchi Yan, and David Wipf, “Handling Distribution Shifts on Graphs: An Invariance
Perspective”, in ICLR'22
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Results on Temporal Graph Evolution

2 Dynamic graph snapshot (Elliptic):

* A graph is generated at every
timestamp (nodes not shared)

 Divide train/valid/test graphs according
to timestamps

Q Temporal evolving graph (Arxiv):

* Nodes and edges are updated in one
graph as time goes by

 Divide train/valid/test nodes according
to time features

 Large time gaps between tr/te nodes

—— ERM S —#— ERM

F1 Score
Z

™M T2 T3 T4 T8 T8 T7 T8 T8 ™M T2 T3 T4 T3 T6 Tf T& T8

(a) GraphSAGE (b) GPRGNN

Figure. F1 score results on Elliptic with dynamic graph
snapshots (chronologically divided into 9 test groups)

Table. Accuracy results on OGBN-Arxiv whose testing nodes
are djvided into three-fold according to time

Method | 2014-2016 2016-2018 2018-2020

ErRM- SAGE | 4209+ 139 3992+253 36.72+2.47
EERM- SAGE | 4155+ 0.68 @ 4036+ 1.29 3895+ 1.57

ErRM- GPR 47254+ 055 4507057 41.53+£0.56
EERM- GPR | 4988 £0.49 4859 £0.52 44.88 & 0.62

Qitian Wu, Hengrui Zhang, Junchi Yan, and David Wipf, “Handling Distribution Shifts on Graphs: An Invariance

Perspective”, in ICLR'22
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Conclusions

Q The main ideas of open-world recommendation [ICML21]:
Inductive Collaborative Filtering (IDCF) e

o o €1 - N ﬂ)
1) partition entities into two groups e . Bl [ Graph Structure J
Learning Module
2) learn a latent graph among entities es | I
and compute new entities' embeddings / J
using those of existing ones e T Y "7

a Potential applications:
* For out-of-graph learning extrapolation, e.g. in knowledge graphs
 Transferring embeddings from well-trained entities to long-tail ones
* Knowledge tranfer in multi-task/multi-label learning
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Conclusions

Q The main ideas of open-world feature extrapolation [NeurlPS'21]:
Feature Extrapolation Networks (FATE)

1) instance-feature matrix as a graph Observed Data Matrix Feature-Data Graph
2) convert feature embedding learning 01'1;1 ? {)3‘,];4 e ‘Eeraph Representauon}
to graph representation learning @1 11100 Sl
(extrapolation via message passing) iy -8—-%;_2—_‘3 - i—_ I ‘

0 Potential applications: festres feaues | | S

* New attribute features for question answering and reasoning (NLP)
 Information from new sensors for robot learning and decisions (Robot)
« Extra annotation features for image learning and understanding (Vision)
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Conclusions

Q The main ideas of graph out-of-distribution generalization [ICLR 21]:
Explore-to-Extrapolate Risk Minimization (EERM)
e ) ]

Explore Extrapolate

O Potential future works: s FonrdCaFon > RENFORGEUpdan > Graert Ut
 Extrapolation from single observed environment
« Handling observed data without correspondence to specific environments
* Inferring heterogenous environment from graph data

1) data augmentation from training data
to maximize environment variance

2) training model predictor to minimize
the mean and variance of risks
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Thanks for listening!

contact: echo740@sjtu.edu.cn
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