Towards Graph Transformers at Scale

Qitian Wu (吴齐天)

Department of Computer Science and Engineering Shanghai Jiao Tong University

[1] Qitian Wu et al., *NodeFormer: A Scalable Graph Structure Learning Transformer for Node Classification*, NeurIPS 2022 (spotlight, top 5%)

[2] Qitian Wu et al., *DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion*, ICLR 2023 (spotlight oral, top 0.5%)

[3] Qitian Wu et al., SGFormer: *Simplifying and Empowering Transformers for Large-Graph Representations*, NeurIPS 2023

Pitfalls of Graph Neural Networks

□ The designs of mainstream GNNs:

- Locally aggregate neighbored nodes' features in each layer
- Use neighbored nodes' embs for informative represensation

Common scenarios GNNs show deficient capability:

hard to capture longrange dependence [Dai et al., 2018]

long-range reasoning

distant signals are overly squashed [Alon et al., 2021] over-squashing

dissimilar linked nodes propagate wrong signals [Zhu et al., 2020]

heterophily

fail to distinguish two similar inputs [Xu et al., 2019]

expressivity

Qitian Wu et al.

Inter-Dependent Data without Input Graphs

Construct graph \mathbf{v}_{j}^{0} \mathbf{v}_{i}^{0} \mathbf{v}_{i}^{0} \mathbf{v}_{i}^{0}

Observed data lies on lowdimensional manifold [Sebastian et al., 2021]

Physical interactions affect data generation yet are not observed [Alvaro et al., 2020]

Complex hidden structures beyond observed geometry [Xu et al., 2020]

□ GNNs require observed graphs as input:

- Solution: Pre-define a graph by some rules (e.g., k nearest neighbors)
- Limitation: the pre-defined graph is independent of downstream tasks

Message Passing Beyond Input Graphs

Qitian Wu et al.

Preliminary: Notations

- > Each node is an instance with a label
- > Train/test on a dataset of nodes in a graph
- > The graph size can be arbitrarily large

Notations for each node

- \mathbf{x}_u node (input) feature
- *yu* node ground-truth label
- \hat{y}_u node predicted label
- $\mathbf{z}_{u}^{(l)}$ node embedding at the l-th layer

Notations for the graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$

- $N = |\mathcal{V}|$ node number $E = |\mathcal{E}|$ edge number
- $\mathbf{X} = [\mathbf{x}_u]_{u=1}^N$ node feature matrix
- $\mathbf{Y} = [y_u]_{u=1}^N$ label vector/matrix
- $\mathbf{A} = [a_{uv}]_{u,v \in \mathcal{V}}$ adjacency matrix
- $\mathbf{Z}^{(l)} = [\mathbf{z}_u^{(l)}]_{u=1}^N$ node embedding matrix

Qitian Wu et al.

Preliminary: Graph Neural Networks

Qitian Wu et al.

Preliminary: Transformers

Qitian Wu et al.

Kernelized softmax message passing

Qitian Wu et al., NodeFormer: A Scalable Graph Structure Learning Transformer for Node Classification, NeurIPS 2022

Qitian Wu et al.

Qitian Wu et al., NodeFormer: A Scalable Graph Structure Learning Transformer for Node Classification, NeurIPS 2022

Qitian Wu et al.

 $\mathbf{K}^{(l)}$ $N \times d$ $\mathbf{Q}^{(l)}$ $N \times d$ $\mathbf{V}^{(l)}$ $N \times d$

Qitian Wu et al., NodeFormer: A Scalable Graph Structure Learning Transformer for Node Classification, NeurIPS 2022

Qitian Wu et al.

Qitian Wu et al., NodeFormer: A Scalable Graph Structure Learning Transformer for Node Classification, NeurIPS 2022

Qitian Wu et al.

Algorithm 1: Scalable All-Pair Message Passing on Latent Graphs with Linear Complexity $(\mathcal{O}(N) \text{ or } \mathcal{O}(N+E))$

Input: Node features $\mathbf{Z}^{(0)} = \mathbf{X}$, input adjacency \mathbf{A} . 1 for l = 0..., L - 1 do $\mathbf{Q}^{(l)} \leftarrow W_Q^{(l)} \mathbf{Z}^{(l)}, \mathbf{K}^{(l)} \leftarrow W_K^{(l)} \mathbf{Z}^{(l)}, \mathbf{V}^{(l)} \leftarrow W_V^{(l)} \mathbf{Z}^{(l)};$ 2 for k = 1, 2, ..., K do 3 $G_k = \{e^{g_{ku}/\tau}\}_{u=1}^N, \ g_{ku} \sim Gumbel(0,1);$ 4 $\tilde{G}_k = G_k.unsqueeze(1).repeat(1,m);$ 5 $ilde{\mathbf{K}}_{k}^{(l)} = ilde{G}_{k} \odot \phi(\mathbf{K}^{(l)}/\sqrt{ au}), \, ilde{\mathbf{Q}}_{k}^{(l)} = ilde{G}_{k} \odot \phi(\mathbf{Q}^{(l)}/\sqrt{ au});$ 6 $\mathbf{U}_{k}^{(l)} \leftarrow (\tilde{\mathbf{K}}_{k}^{(l)})^{\top} \mathbf{V}^{(l)}, \mathbf{O}_{k}^{(l)} \leftarrow (\tilde{\mathbf{K}}_{k}^{(l)})^{\top} \mathbf{1}_{N \times 1};$ 7 8 9

Output: Predict node labels $\hat{\mathbf{Y}} = \text{MLP}(\{\mathbf{Z}^{(l)}\}_{l=0}^{L}).$

Qitian Wu et al., NodeFormer: A Scalable Graph Structure Learning Transformer for Node Classification, NeurIPS 2022

Qitian Wu et al.

Algorithm 1: Scalable All-Pair Message Passing on Latent Graphs with Linear Complexity $(\mathcal{O}(N) \text{ or } \mathcal{O}(N+E))$

Input: Node features $\mathbf{Z}^{(0)} = \mathbf{X}$, input adjacency \mathbf{A} . 1 for l = 0..., L - 1 do $\mathbf{Q}^{(l)} \leftarrow W_Q^{(l)} \mathbf{Z}^{(l)}, \mathbf{K}^{(l)} \leftarrow W_K^{(l)} \mathbf{Z}^{(l)}, \mathbf{V}^{(l)} \leftarrow W_V^{(l)} \mathbf{Z}^{(l)};$ 2 for k = 1, 2, ..., K do 3 $G_k = \{e^{g_{ku}/\tau}\}_{u=1}^N, \ g_{ku} \sim Gumbel(0,1);$ 4 $\tilde{G}_k = G_k.unsqueeze(1).repeat(1,m);$ 5 $ilde{\mathbf{K}}_{k}^{(l)} = ilde{G}_{k} \odot \phi(\mathbf{K}^{(l)}/\sqrt{ au}), \, ilde{\mathbf{Q}}_{k}^{(l)} = ilde{G}_{k} \odot \phi(\mathbf{Q}^{(l)}/\sqrt{ au});$ 6 $\mathbf{U}_{k}^{(l)} \leftarrow (\tilde{\mathbf{K}}_{k}^{(l)})^{\top} \mathbf{V}^{(l)}, \mathbf{O}_{k}^{(l)} \leftarrow (\tilde{\mathbf{K}}_{k}^{(l)})^{\top} \mathbf{1}_{N \times 1};$ 7 $\mathbf{Z}^{(l+1)} \leftarrow \frac{1}{K} \sum_{k=1}^{K} \frac{\tilde{\mathbf{Q}}_{k}^{(l)} \mathbf{U}_{k}^{(l)}}{\tilde{\mathbf{Q}}_{k}^{(l)} \mathbf{Q}_{k}^{(l)}}; \% \text{ average K samples}$ 8 9

Output: Predict node labels $\hat{\mathbf{Y}} = \text{MLP}(\{\mathbf{Z}^{(l)}\}_{l=0}^{L}).$

Qitian Wu et al., NodeFormer: A Scalable Graph Structure Learning Transformer for Node Classification, NeurIPS 2022

Qitian Wu et al.

```
# qs: [N, H, D], ks: [L, H, D], vs: [L, H, D]
```

qs = softmax_kernel(qs) # [N, H, M]
ks = softmax_kernel(ks) # [L, H, M]

numerator

```
kvs = torch.einsum("lhm,lhd->hmd", ks, vs)
attn_num = torch.einsum("nhm,hmd->nhd", qs, kvs) # [N, H, D]
```

denominator

```
all_ones = torch.ones([ks.shape[0]])
ks_sum = torch.einsum("lhm,l->hm", ks, all_ones)
attn_den = torch.einsum("nhm,hm->nh", qs, ks_sum) # [N, H]
```

```
# attentive aggregated results
z_next = attn_num / attn_den # [N, H, D]
```


Qitian Wu et al.

Input Graphs as Relational Bias

Qitian Wu et al., NodeFormer: A Scalable Graph Structure Learning Transformer for Node Classification, NeurIPS 2022

Qitian Wu et al.

Input Graphs as Regularization Loss

Supervised classification loss

$$\mathcal{L}_s(\mathbf{Y}, \hat{\mathbf{Y}}) = -rac{1}{N} \sum_{v=1}^N \sum_{c=1}^C \mathbb{I}[y_u = c] \log \hat{y}_{u,c}$$

Edge-level regularization loss

$$\begin{aligned} \mathcal{L}_{e}(\mathbf{A}, \tilde{\mathbf{A}}) &= -\frac{1}{NL} \sum_{l=1}^{L} \sum_{(u,v) \in \mathcal{E}} \frac{1}{d_{u}} \log \pi_{uv}^{(l)} \\ \pi_{uv}^{(l)} &= \frac{\phi(W_{Q}^{(l)} \mathbf{z}_{u}^{(l)})^{\top} \phi(W_{K}^{(l)} \mathbf{z}_{v}^{(l)})}{\phi(W_{Q}^{(l)} \mathbf{z}_{u}^{(l)})^{\top} \sum_{w=1}^{N} \phi(W_{K}^{(l)} \mathbf{z}_{w}^{(l)})} \end{aligned}$$

Final loss function

$$\mathcal{L} = \mathcal{L}_s + \lambda \mathcal{L}_e$$

Key observation:

labeled nodes < N << N^2 = # node pairs

The log-likelihood of observed edges, if assuming data distribution as

$$p_0(v|u) = \left\{ egin{array}{cc} rac{1}{d_u}, & a_{uv} = 1 \ 0, & otherwise. \end{array}
ight.$$

only require O(E)

Since we only need to query the probability for each observed edges, where the complexity of each query is $\mathcal{O}(1)$

Qitian Wu et al., NodeFormer: A Scalable Graph Structure Learning Transformer for Node Classification, NeurIPS 2022

Qitian Wu et al.

Dissecting the Rationale of New Objective

□ A variational perspective look at the training objective

Key insights:

Treat the latent structure estimation as a variational distribution $q(ilde{f A}|{f X},{f A})$

The all-pair message passing module induces a predictive distribution $p(\mathbf{Y}| ilde{\mathbf{A}},\mathbf{X},\mathbf{A})$

$$\mathcal{L}_{s}(\mathbf{Y}, \hat{\mathbf{Y}}) = -\frac{1}{N} \sum_{v=1}^{N} \sum_{c=1}^{C} \mathbb{I}[y_{u} = c] \log \hat{y}_{u,c} \qquad \qquad \mathcal{L}_{e}(\mathbf{A}, \tilde{\mathbf{A}}) = -\frac{1}{NL} \sum_{l=1}^{L} \sum_{(u,v) \in \mathcal{E}} \frac{1}{d_{u}} \log \pi_{uv}^{(l)}$$
$$p^{*}, q^{*} = \arg \min_{p,q} \underbrace{-\mathbb{E}_{q}[\log p(\mathbf{Y}|\tilde{\mathbf{A}}, \mathbf{X}, \mathbf{A})]}_{\mathcal{L}_{s}} + \underbrace{\mathcal{D}(q(\tilde{\mathbf{A}}|\mathbf{X}, \mathbf{A})||p_{0}(\tilde{\mathbf{A}}|\mathbf{X}, \mathbf{A}))}_{\mathcal{L}_{e}}$$

Proposition (Underlying Effect for Learning Optimal Structures)

Assume q can exploit arbitrary distributions over $\tilde{\mathbf{A}}$. When the objective achieves the optimum, we have 1) $\mathcal{D}(q(\tilde{\mathbf{A}}|\mathbf{X}, \mathbf{A}) \| p(\tilde{\mathbf{A}}|\mathbf{Y}, \mathbf{X}, \mathbf{A})) = 0$, and 2) $\log p(\mathbf{Y}|\mathbf{X}, \mathbf{A})$ is maximized.

Approximation Error and Concentration

Theorem 1 (Approximation Error for Softmax-Kernel)

Assume $\|\mathbf{q}_u\|_2$ and $\|\mathbf{k}_v\|_2$ are bounded by r , and ϕ the Positive Random Features, then with probability at least $1-\epsilon$, the approximation error gap will be bounded by

$$\Delta = \left| \phi(\mathbf{q}_u / \sqrt{\tau})^\top \phi(\mathbf{k}_v / \sqrt{\tau}) - \kappa(\mathbf{q}_u / \sqrt{\tau}, \mathbf{k}_v / \sqrt{\tau}) \right| \right| \leq \left| \mathcal{O}\left(\sqrt{\frac{\exp(6r/\tau)}{m\epsilon}} \right)$$

For random feature dimension m and temperature au, the error is independent of node number N

Theorem 2 (Concentration of Kernelized Gumbel-Softmax Random Variables)

Suppose the random feature dimension m is sufficiently large, we have the convergence property for the kernelized Gumbel-Softmax operator

$$\lim_{\tau \to 0} \mathbb{P}(c_{uv} > c_{uv'}, \forall v' \neq v) = \frac{\exp(\mathbf{q}_u^\top \mathbf{k}_v)}{\sum_{w=1}^N \exp(\mathbf{q}_u^\top \mathbf{k}_w)}, \quad \lim_{\tau \to 0} \mathbb{P}(c_{uv} = 1) = \frac{\exp(\mathbf{q}_u^\top \mathbf{k}_v)}{\sum_{w=1}^N \exp(\mathbf{q}_u^\top \mathbf{k}_w)}$$

The sampled results converge to the ones induced by the Softmax categorical distribution

Qitian Wu et al., NodeFormer: A Scalable Graph Structure Learning Transformer for Node Classification, NeurIPS 2022

Oitian Wu et al.

 $m\epsilon$

Comparative Experiments

Experiment on small node classification benchmarks

LDS [Franceschi et al., 2020] IDGL [Chen et al., 2021]

Experiment on large-scale datasets OGB-Proteins and Amazon2M

Method	Accuracy (%)	Train Mem
MLP	63.46 ± 0.10	1.4 GB
GCN	83.90 ± 0.10	5.7 GB
SGC	81.21 ± 0.12	1.7 GB
GraphSAINT-GCN	83.84 ± 0.42	2.1 GB
GraphSAINT-GAT	85.17 ± 0.32	2.2 GB
NodeFormer	87.85 ± 0.24	4.0 GB
NODEFORMER-dt	87.02 ± 0.75	2.9 GB
NODEFORMER-tp	87.55 ± 0.11	4.0 GB

NodeFormer successfully scales to graphs with 2M nodes

NodeFormer using batch size 0.1M only requires 4GB memory and hours for training on a single GPU

Experiment on image/text classification (no input graph)

Mathad		Mini-Ir	nageNet	1	20News-Group			
Ivietnoa	k = 5	k = 10	k = 15	k = 20	k = 5	k = 10	k = 15	k = 20
GCN	84.86 ± 0.42	85.61 ± 0.40	85.93 ± 0.59	85.96 ± 0.66	65.98 ± 0.68	$64.13 \pm \textbf{0.88}$	62.95 ± 0.70	62.59 ± 0.62
GAT	84.70 ± 0.48	85.24 ± 0.42	85.41 ± 0.43	85.37 ± 0.51	64.06 ± 0.44	62.51 ± 0.71	61.38 ± 0.88	60.80 ± 0.59
DropEdge	83.91 ± 0.24	85.35 ± 0.44	85.25 ± 0.63	85.81 ± 0.65	64.46 ± 0.43	64.01 ± 0.42	62.46 ± 0.51	62.68 ± 0.71
IDGL	83.63 ± 0.32	84.41 ± 0.35	85.50 ± 0.24	85.66 ± 0.42	65.09 ± 1.23	63.41 ± 1.26	61.57 ± 0.52	62.21 ± 0.79
LDS	OOM	OOM	OOM	OOM	$\textbf{66.15} \pm 0.36$	64.70 ± 1.07	63.51 ± 0.64	63.51 ± 1.75
NODEFORMER	$\pmb{86.77} \pm 0.45$	$\pmb{86.74} \pm 0.23$	$\pmb{86.87} \pm 0.41$	$\pmb{86.64} \pm 0.42$	66.01 ± 1.18	$\textbf{65.21} \pm 1.14$	$\textbf{64.69} \pm 1.31$	$\textbf{64.55} \pm 0.97$
NODEFORMER w/o graph		87.46	± 0.36		64.71 ± 1.33			

NodeFormer also works with no input graph

Scalability analysis on time/space costs

NodeFormer reduces training time by 93.1%

Qitian Wu et al.

Ablation Study and Hyper-parameters

Larger random feature dimension m allows better approximation

Moderate temperature (tau=0.25) yields stably good performance

Dataset	NODEFORMER	NODEFORMER w/o reg	NODEFORMER w/o rb
Cora	88.69 ± 0.46	81.98 ± 0.46	88.06 ± 0.59
Citeseer	$\textbf{76.33} \pm 0.59$	70.60 ± 1.20	74.12 ± 0.64
Deezer	$\textbf{71.24} \pm 0.32$	71.22 ± 0.32	71.10 ± 0.36
Actor	$\textbf{35.31} \pm 1.29$	35.15 ± 1.32	34.60 ± 1.32

Ablation study on edge regularization loss and relational bias

Oitian	Wu	et	al.
Qician	VV	CC	ч.

Visualization of Learned Structures

The latent structures produced by NodeFormer tend to connect nodes within the same class and increase the overall connectivity of the whole graph

Prior Art quadratic complexity (hard to scale to 10K nodes)

NodeFormer linear complexity (largest demonstration on 2M nodes)

Follow-up open questions:

- issue 1: current Transformers mostly stem from heuristic designs

Is there any principled guidance for the design of Transformer attentions?

- issue 2: current Transformers are data-hungry (sufficient supervision) Can graph Transformers handle learning tasks with low labeled rate?

GNN Feed-forward as Diffusion Process

Qitian Wu et al., DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, ICLR 2023

Qitian Wu et al.

General Formulation of Diffusion Process

The diffusion process of N particles driven by initial states and pairwise interactions:

Diffusion over discrete space composed of N instances with latent structures:

$$\frac{\partial \mathbf{z}_i(t)}{\partial t} = \sum_{j=1}^N \mathbf{S}_{ij}(\mathbf{Z}(t), t)(\mathbf{z}_j(t) - \mathbf{z}_i(t))$$

Qitian Wu et al., DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, ICLR 2023

Qitian Wu et al.

Diffusion with Latent Structures

The iterative dynamics (by explicit scheme) of diffusion induce feed-forward layers:

$$\mathbf{z}_{i}^{(k+1)} = \left(1 - \tau \sum_{j=1}^{N} \mathbf{S}_{ij}^{(k)}\right) \mathbf{z}_{i}^{(k)} + \tau \sum_{j=1}^{N} \mathbf{S}_{ij}^{(k)} \mathbf{z}_{j}^{(k)}$$

The $N \times N$ diffusivity $S^{(k)}$ is a measure of the rate at which the node signals spread

- S^(k) is an identity matrix: message passing only through self-loops
- $S^{(k)}$ only has non-zero values for observed edges: message passing over a graph
- $S^{(k)}$ can have non-zero values for all entries: all-pair message passing

Key question: How to determine a proper diffusivity function for learning desirable node representations?

Oitian Wu et al.

Energy-Constrained Diffusion Process

Principle 1: particle states evolution described by a diffusion process

Principle 2: the evolutionary directions towards descending the global energy

Key insight: treat diffusivity as latent variables whose optimality is given by descent criteria w.r.t. a principled global energy

Qitian Wu et al., DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, ICLR 2023

Qitian Wu et al.

Closed-Form Solutions for Diffusion Dynamics

Theorem (Optimal Diffusivity Estimates for Energy-Constrained Diffusion)

For any regularized energy over $\mathbf{Z} = \{\mathbf{z}_i\}_{i=1}^N$ defined by the form

$$E(\mathbf{Z}, k; \delta) = \|\mathbf{Z} - \mathbf{Z}^{(k)}\|_{\mathcal{F}}^2 + \lambda \sum_{i=1}^{j} \delta(\|\mathbf{z}_i - \mathbf{z}_j\|_2^2)$$

where $\delta : \mathbb{R}^+ \to \mathbb{R}$ is a concave, non-decreasing function, the diffusion process with diffusivity

$$\hat{\mathbf{S}}_{ij}^{(k)} = \frac{\omega_{ij}^{(k)}}{\sum_{l=1}^{N} \omega_{il}^{(k)}}, \quad \omega_{ij}^{(k)} = \left. \frac{\partial \delta(z^2)}{\partial z^2} \right|_{z^2 = \|\mathbf{z}_i^{(k)} - \mathbf{z}_j^{(k)}\|}$$

yields a descent step on the energy, i.e., $E(\mathbf{Z}^{(k+1)}, k; \delta) \leq E(\mathbf{Z}^{(k)}, k-1; \delta)$

One-layer update of **DIFFormer**

$$\begin{array}{ll} \textbf{Diffusivity Inference:} \quad \hat{\mathbf{S}}_{ij}^{(k)} = \frac{f(\|\mathbf{z}_i^{(k)} - \mathbf{z}_j^{(k)}\|_2^2)}{\sum_{l=1}^N f(\|\mathbf{z}_i^{(k)} - \mathbf{z}_l^{(k)}\|_2^2)}, \quad 1 \le i, j \le N \\ \textbf{State Update:} \quad \mathbf{z}_i^{(k+1)} = \left(1 - \tau \sum_{j=1}^N \hat{\mathbf{S}}_{ij}^{(k)}\right) \mathbf{z}_i^{(k)} + \tau \sum_{j=1}^N \hat{\mathbf{S}}_{ij}^{(k)} \mathbf{z}_j^{(k)}, \quad 1 \le i \le N \end{array}$$

Qitian Wu et al., DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, ICLR 2023

Qitian Wu et al.

DIFFormer: Instantiations of Diffusivity

DIFFormer layer with simple diffusivity (DIFFormer-s):

$$\omega_{ij}^{(k)} = f(\|\tilde{\mathbf{z}}_{i}^{(k)} - \tilde{\mathbf{z}}_{j}^{(k)}\|_{2}^{2}) = 1 + \left(\frac{\mathbf{z}_{i}^{(k)}}{\|\mathbf{z}_{i}^{(k)}\|_{2}}\right)^{\top} \left(\frac{\mathbf{z}_{j}^{(k)}}{\|\mathbf{z}_{j}^{(k)}\|_{2}}\right)$$
$$\sum_{j=1}^{N} \mathbf{S}_{ij}^{(k)} \mathbf{z}_{j}^{(k)} = \sum_{j=1}^{N} \frac{1 + (\tilde{\mathbf{z}}_{i}^{(k)})^{\top} \tilde{\mathbf{z}}_{j}^{(k)}}{\sum_{l=1}^{N} \left(1 + (\tilde{\mathbf{z}}_{i}^{(k)})^{\top} \tilde{\mathbf{z}}_{l}^{(k)}\right)} \mathbf{z}_{j}^{(k)}$$

DIFFormer layer with advanced diffusivity (DIFFormer-a):

$$\omega_{ij}^{(k)} = f(\|\tilde{\mathbf{z}}_{i}^{(k)} - \tilde{\mathbf{z}}_{j}^{(k)}\|_{2}^{2}) = \frac{1}{1 + \exp\left(-(\mathbf{z}_{i}^{(k)})^{\top}(\mathbf{z}_{j}^{(k)})\right)}$$

$$\sum_{j=1}^{N} \mathbf{S}_{ij}^{(k)} \mathbf{z}_{j}^{(k)} = \sum_{j=1}^{N} \frac{\operatorname{sigmoid}\left((\mathbf{z}_{i}^{(k)})^{\top}\mathbf{z}_{j}^{(k)}\right)}{\sum_{l=1}^{N} \operatorname{sigmoid}\left((\mathbf{z}_{i}^{(k)})^{\top}\mathbf{z}_{l}^{(k)}\right)} \mathbf{z}_{j}^{(k)}$$

$$\sum_{j=1}^{N} \mathbf{S}_{ij}^{(k)} \mathbf{z}_{j}^{(k)} = \sum_{j=1}^{N} \frac{\operatorname{sigmoid}\left((\mathbf{z}_{i}^{(k)})^{\top}\mathbf{z}_{l}^{(k)}\right)}{\sum_{l=1}^{N} \operatorname{sigmoid}\left((\mathbf{z}_{i}^{(k)})^{\top}\mathbf{z}_{l}^{(k)}\right)} \mathbf{z}_{j}^{(k)}$$

Qitian Wu et al., DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, ICLR 2023

Qitian Wu et al.

DIFFormer: Extension to a Transformer Layer

Incorporation of input graphs (if available): add graph convolution with global attention

$$\overline{\mathbf{P}}^{(k)} = rac{1}{2} \left(\mathbf{\hat{S}}^{(k)} + \tilde{\mathbf{A}}
ight) \mathbf{Z}^{(k)}$$

DIFFormer layer for updating embedding of the next layer:

Qitian Wu et al., DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, ICLR 2023

Qitian Wu et al.

Pytorch Implementation

qs: [N, H, D], ks: [L, H, D], vs: [L, H, D]

qs = qs / torch.norm(qs, p=2) # [N, H, D]
ks = ks / torch.norm(ks, p=2) # [L, H, D]
N = qs.shape[0]

numerator

kvs = torch.einsum("lhm,lhd->hmd", ks, vs)
attn_num = torch.einsum("nhm,hmd->nhd", qs, kvs) # [N, H, D]
all_ones = torch.ones([vs.shape[0]])
vs_sum = torch.einsum("l,lhd->hd", all_ones, vs) # [H, D]
attn_num += vs_sum.unsqueeze(0).repeat(vs.shape[0], 1, 1) # [N, H, D]

denominator

all_ones = torch.ones([ks.shape[0]])
ks_sum = torch.einsum("lhm,l->hm", ks, all_ones)
attn_den = torch.einsum("nhm,hm->nh", qs, ks_sum) # [N, H]

attentive aggregated results

attn_den = torch.unsqueeze(attn_den, len(attn_den.shape)) # [N, H, 1] attn_den += torch.ones_like(attn_den) * N z_next = attn_num / attn_den # [N, H, D]

Qitian Wu et al.

DIFFormer: Scaling to Large-Scale Datasets

Large-scale datasets with massive amount of data, e.g., N instances (N can be arbitrarily large)

Traditional IID learning enables mini-batch learning with a moderate batch size B << N

How can message passing networks handle large-scale graphs?

Existing solutions: 1. neighbor sampling (slow training and limited receptive field)

2. graph clustering (time-consuming pre-processing and limited receptive field)

Qitian Wu et al.

Interpretations of MLP/GNNs as Diffusion

	Energy function	Diffusivity	Illustration
MLP	$\ \mathbf{Z}-\mathbf{Z}^{(k)}\ _2^2$	$\mathbf{S}_{ij}^{(k)} = \begin{cases} 1, & \text{if } i = j \\ 0, & otherwise \end{cases}$	
GCN	$\sum_{(i,j)\in\mathcal{E}} \ \mathbf{z}_i - \mathbf{z}_j\ _2^2$	$\mathbf{S}_{ij}^{(k)} = \begin{cases} \frac{1}{\sqrt{d_i d_j}}, & \text{if } (i,j) \in \mathcal{E} \\ 0, & otherwise \end{cases}$	
GAT	$\sum_{(i,j)\in\mathcal{E}}\delta(\ \mathbf{z}_i-\mathbf{z}_j\ _2^2)$	$\mathbf{S}_{ij}^{(k)} = \begin{cases} \frac{f(\ \mathbf{z}_i^{(k)} - \mathbf{z}_j^{(k)}\ _2^2)}{\sum_{l:(i,l)\in\mathcal{E}} f(\ \mathbf{z}_i^{(k)} - \mathbf{z}_l^{(k)}\ _2^2)}, & \text{if } (i,j)\in\mathcal{E} \\ 0, & otherwise \end{cases}$	
DIFFormer	$\ \mathbf{Z} - \mathbf{Z}^{(k)}\ _{2}^{2} + \lambda \sum_{i,j} \delta(\ \mathbf{z}_{i} - \mathbf{z}_{j}\ _{2}^{2})$	$\mathbf{S}_{ij}^{(k)} = \frac{f(\ \mathbf{z}_i^{(k)} - \mathbf{z}_j^{(k)}\ _2^2)}{\sum_{l=1}^N f(\ \mathbf{z}_i^{(k)} - \mathbf{z}_l^{(k)}\ _2^2)}, 1 \le i, j \le N$	

Qitian Wu et al., DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, ICLR 2023

Qitian Wu et al.

Results on Graph-based Node Classification

Туре	Model	Non-linearity	PDE-solver	Input-G	Cora	Citeseer	Pubmed
		D		and the second second	561 + 16	567 ± 17	60.9 ± 1.5
Desis medels		ĸ	-	- D	50.1 ± 1.0	30.7 ± 1.7	09.0 ± 1.3
Basic models		-	-	ĸ	08.2	42.8	05.8
<u></u>	ManiReg	K	. 	ĸ	60.4 ± 0.8	67.2 ± 1.6	71.3 ± 1.4
	GCN	R	-	R	81.5 ± 1.3	71.9 ± 1.9	77.8 ± 2.9
	GAT	R	-	R	83.0 ± 0.7	72.5 ± 0.7	79.0 ± 0.3
	SGC	-	<u>-</u>	R	81.0 ± 0.0	71.9 ± 0.1	78.9 ± 0.0
Standard CNN-	GCN-kNN	R	-	-	72.2 ± 1.8	56.8 ± 3.2	74.5 ± 3.2
Standard GNNs	GAT-kNN	R	-	-	73.8 ± 1.7	56.4 ± 3.8	75.4 ± 1.3
	Dense GAT	R	-	1.7	78.5 ± 2.5	66.4 ± 1.5	66.4 ± 1.5
	LDS	R	-	-	83.9 ± 0.6	$\textbf{74.8} \pm \textbf{0.3}$	out-of-memory
	GLCN	R	-	-	83.1 ± 0.5	72.5 ± 0.9	78.4 ± 1.5
	GRAND-1	-	R	R	83.6 ± 1.0	73.4 ± 0.5	78.8 ± 1.7
	GRAND	R	R	R	83.3 ± 1.3	74.1 ± 1.7	78.1 ± 2.1
D'00 1 1 1 1	GRAND++	R	R	R	82.2 ± 1.1	73.3 ± 0.9	78.1 ± 0.9
Diffusion-based models	GDC	R	-	R	83.6 ± 0.2	73.4 ± 0.3	78.7 ± 0.4
	GraphHeat	R	-	R	83.7	72.5	80.5
	DGC-Euler	-	-	R	83.3 ± 0.0	73.3 ± 0.1	80.3 ± 0.1
-	NodeFormer	-	-	82	83.4 ± 0.2	73.0 ± 0.3	$\textbf{81.5} \pm \textbf{0.4}$
Graph Transformers	DIFFORMER-S	-	-	-	$\textbf{85.9} \pm \textbf{0.4}$	73.5 ± 0.3	$\textbf{81.8} \pm \textbf{0.3}$
F	DIFFORMER-a	-	-	-	$\textbf{84.1} \pm \textbf{0.6}$	$\textbf{75.7} \pm \textbf{0.3}$	80.5 ± 1.2

Results of testing accuracy on semi-supervised node classification (20 nodes per class for train)

Qitian Wu et al., DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, ICLR 2023

Results of testing accuracy on two large-scale graph datasets

Models	Proteins	Pokec		
MLP	72.41 ± 0.10	60.15 ± 0.03		
LP	74.73	52.73		
SGC	49.03 ± 0.93	52.03 ± 0.84		
GCN	$74.22 \pm 0.49^{*}$	$62.31 \pm 1.13^{*}$		
GAT	$75.11 \pm 1.45^{*}$	$65.57 \pm 0.34^*$		
NodeFormer	$\textbf{77.45} \pm \textbf{1.15}^*$	$\textbf{68.32} \pm \textbf{0.45}^{*}$		
DIFFORMER-s	$\textbf{79.49} \pm \textbf{0.44}^{*}$	$\textbf{69.24} \pm \textbf{0.76}^{*}$		

Proteins: 132,534 nodes, 39,561,252 edges Pokec: 1,632,803 nodes, 30,622,564 edges

We use batch size 10K/100K for training DIFFormer-s using a single GPU on Proteins/Pokec

Test Acc and memory costs of different batch sizes on Pokec

Batch size	5000	10000	20000	50000	100000	200000
Test Acc (%) GPU Memory (MB)	$ \begin{vmatrix} 65.24 \pm 0.34 \\ 1244 \end{vmatrix} $	$67.48 \pm 0.81 \\ 1326$	$68.53 \pm 0.75 \\ 1539$	$\begin{array}{c} 68.96\pm0.63\\ 2060\end{array}$	$\begin{array}{c} 69.24\pm0.76\\ 2928\end{array}$	$ \begin{array}{r} 69.15 \pm 0.52 \\ 4011 \\ \end{array} $

Qitian Wu et al., DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, ICLR 2023

Qitian Wu et al.

Results on Image & Text Classification

Results of testing accuracy on semi-supervised image and text classification

Da	ataset	MLP	LP	ManiReg	GCN-kNN	GAT-kNN	DenseGAT GLCN		DIFFORMER-s	DIFFORMER-a
CIFAR	100 labels 500 labels 1000 labels	$\begin{array}{c} 65.9 \pm 1.3 \\ 73.2 \pm 0.4 \\ 75.4 \pm 0.6 \end{array}$	66.2 70.6 71.9	67.0 ± 1.9 72.6 ± 1.2 74.3 ± 0.4	66.7 ± 1.5 72.9 ± 0.4 74.7 ± 0.5	66.0 ± 2.1 72.4 ± 0.5 74.1 ± 0.5	out-of-memory out-of-memory out-of-memory	66.6 ± 1.4 72.8 ± 0.5 74.7 ± 0.3	$69.1 \pm 1.1 \\74.8 \pm 0.5 \\76.6 \pm 0.3$	69.3 ± 1.4 74.0 ± 0.6 75.9 ± 0.3
STL	100 labels 500 labels 1000 labels	$66.2 \pm 1.4 \\ 73.0 \pm 0.8 \\ 75.0 \pm 0.8$	65.2 71.8 72.7	66.5 ± 1.9 72.5 ± 0.5 74.2 ± 0.5	66.9 ± 0.5 72.1 ± 0.8 73.7 ± 0.4	66.5 ± 0.8 72.0 ± 0.8 73.9 ± 0.6	out-of-memory out-of-memory out-of-memory	66.4 ± 0.8 72.4 ± 1.3 74.3 ± 0.7	67.8 ± 1.1 73.7 ± 0.6 76.4 ± 0.5	66.8 ± 1.1 72.9 ± 0.7 75.3 ± 0.6
20News	1000 labels 2000 labels 4000 labels	$\begin{vmatrix} 54.1 \pm 0.9 \\ 57.8 \pm 0.9 \\ 62.4 \pm 0.6 \end{vmatrix}$	55.9 57.6 59.5	56.3 ± 1.2 60.0 ± 0.8 63.6 ± 0.7	56.1 ± 0.6 60.6 ± 1.3 64.3 ± 1.0	55.2 ± 0.8 59.1 ± 2.2 62.9 ± 0.7	54.6 ± 0.2 59.3 ± 1.4 62.4 ± 1.0	56.2 ± 0.8 60.2 ± 0.7 64.1 ± 0.8	$57.7 \pm 0.3 \\ 61.2 \pm 0.6 \\ 65.9 \pm 0.8$	57.9 ± 0.7 61.3 ± 1.0 64.8 ± 1.0

For image datasets, use a pretrained network to obtain embeddings of images

Use k-nearest-neighbor to construct a graph for baseline methods GCN-kNN and GAT-kNN

DIFFormer-s and DIFFormer-a without using any graph structure outperform the competitors

Qitian Wu et al., DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, ICLR 2023

Results on Spatial-Temporal Prediction

Results of testing mean square error for predicting spatial-temporal dynamics based on history

Dataset	MLP	GCN	GAT	Dense GAT	GAT-kNN	GCN-kNN	DIFFORMER-s	DIFFORMER-a	DIFFORMER-s w/o g	DIFFORMER-a w/o g
Chickenpox	0.924	0.923	0.924	0.935	0.926	0.936	0.914	0.915	0.916	0.916
	(±0.001)	(±0.001)	(±0.002)	(±0.005)	(±0.004)	(±0.004)	(0.006)	(0.008)	(0.006)	(0.006)
Covid	0.956	1.080	1.052	1.524	0.861	1.475	0.779	0.757	0.779	0.741
	(±0.198)	(±0.162)	(±0.336)	(±0.319)	(±0.123)	(±0.560)	(0.037)	(0.048)	(0.028)	(0.052)
WikiMath	1.073	1.292	1.339	0.826	0.882	1.023	0.731	0.763	0.727	0.716
	(±0.042)	(±0.125)	(±0.073)	(±0.070)	(±0.015)	(±0.058)	(0.007)	(0.020)	(0.025)	(0.030)

Goal: Given the historical graph snapshot, one needs to predict node labels at the next step

DIFFormer without using graph structure (w/o g) can sometimes yield better prediction

Ablation Study and Hyperparameters

Ablation study on attention functions (i.e., diffusivity parameterization)

Impact of model depth K and step size $\tau\,$ for diffusion iteration

12

Model Depth K

16

100

80

60

40

20

0

2

4

GCN

DenseGAT

DIFFormer $\tau = 0.5$

DIFFormer $\tau = 0.2$

DIFFormer $\tau = 0.1$

8

Accuracy

24

20

Visualization of Representations

Instance embeddings (colored by different classes) and attention weights (edges with different strengths) on 20News (the left) and STL-10 (the right)

Prior Art	quadratic complexity (hard to scale to 10K nodes) data-hungry (require abundant labeled information)
NodeFormer	linear complexity (largest demonstration on 2M nodes)

DIFFormer capable of learning with limited labeled rate

Follow-up open questions:

(issue: the complicated architectures limit the efficiency and scalability)

Can Transformer architectures be simplified and scale to web-scale graphs?

Observation: one-layer all-pair attention can propagate information among arbitrary node pairs

SGFormer: one-layer single-head global attention + auxiliary GNN

• Simple attention with linear complexity:

$$\mathbf{Q} = f_Q(\mathbf{Z}), \quad \tilde{\mathbf{Q}} = \frac{\mathbf{Q}}{\|\mathbf{Q}\|_{\mathcal{F}}}, \quad \mathbf{K} = f_K(\mathbf{Z}), \quad \tilde{\mathbf{K}} = \frac{\mathbf{K}}{\|\mathbf{K}\|_{\mathcal{F}}}, \quad \mathbf{V} = f_V(\mathbf{Z}),$$
$$\mathbf{D} = \operatorname{diag}\left(\mathbf{1} + \frac{1}{N}\tilde{\mathbf{Q}}(\tilde{\mathbf{K}}^{\top}\mathbf{1})\right), \quad \mathbf{Z} = \beta \mathbf{D}^{-1}\left[\mathbf{V} + \frac{1}{N}\tilde{\mathbf{Q}}(\tilde{\mathbf{K}}^{\top}\mathbf{V})\right] + (1 - \beta)\mathbf{Z}^{(0)}$$

• Add an auxiliary GNN at the output layer:

$$\mathbf{Z}_O = (1 - \alpha)\mathbf{Z} + \alpha \mathbf{GN}(\mathbf{Z}^{(0)}, \mathbf{A}), \quad \hat{Y} = f_O(\mathbf{Z}_O)$$

Qitian Wu et al., SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations, NeurIPS 2023

Comparison of Existing Graph Transformers

	pos emb	multi-head	pre-processing	all-pair expressivity	complexity	largest demo of #nodes
GraphTransformer [Dwivedi et al. 2020]	R	R	R	yes	$O(N^2)$	0.2K
Graphormer [Ying et al. 2021]	R	R	R	yes	$O(N^2)$	0.3K
SAT [Chen et al. 2022]	R	R	R	yes	$O(N^2)$	0.2K
GraphGPS [Rampáse et al. 2022]	R	R	R	yes	$O(N^2)$	1.0K
ANS-GT [Zhang et al. 2022]	R	R	R	no	$O(Nsm^2)$	20K
NodeFormer [Wu et al. 2022]	R	R	-	yes	O(N+E)	2M
SGFormer	-	-	-	yes	O(N+E)	0.1B

Experiment Results

Method	ogbn-proteins	Amazon2m	pokec	ogbn-arxiv	ogbn-papers100M	
# nodes	132,534	2,449,029	1,632,803	169,343	111,059,956	
# edges	39,561,252	61,859,140	30,622,564	1,166,243	1,615,685,872	
MLP	72.04 ± 0.48	63.46 ± 0.10	60.15 ± 0.03	55.50 ± 0.23	47.24 ± 0.31	
GCN	72.51 ± 0.35	83.90 ± 0.10	62.31 ± 1.13	71.74 ± 0.29	OOM	
SGC	70.31 ± 0.23	81.21 ± 0.12	52.03 ± 0.84	67.79 ± 0.27	63.29 ± 0.19	
GCN-NSampler	73.51 ± 1.31	83.84 ± 0.42	63.75 ± 0.77	68.50 ± 0.23	62.04 ± 0.27	
GAT-NSampler	74.63 ± 1.24	85.17 ± 0.32	62.32 ± 0.65	67.63 ± 0.23	63.47 ± 0.39	
SIGN	71.24 ± 0.46	80.98 ± 0.31	68.01 ± 0.25	70.28 ± 0.25	65.11 ± 0.14	
NodeFormer	77.45 ± 1.15	87.85 ± 0.24	70.32 ± 0.45	59.90 ± 0.42	-	
SGFormer	79.53 ± 0.38	89.09 ± 0.10	73.76 ± 0.24	72.63 ± 0.13	66.01 ± 0.37	

Results on large node classification graphs

SGFormer can be trained in full-graph manner on obgn-arxiv

Mini-batch training for proteins, Amazon2M, pokec with batch size 10K/100K For Papers100M, using batch size 0.4M only requires 3.5 hours on a 24GB GPU

	· · · · · · · · · · · · · · · · · · ·	8 	✓						-
Method	Cora			PubMed			Amazon2M		
	Tr (ms)	Inf (ms)	Mem (GB)	Tr (ms)	Inf (ms)	Mem (GB)	Tr (ms)	Inf (ms)	Mem (GB)
Graphormer	215.8	63.6	5.0	-	-	-	-	-	-
GraphTrans	160.4	40.2	3.8	-	-	-	-	_	
ANS-GT	570.1	539.2	1.0	511.9	461.0	2.1	-	-	1
NodeFormer	68.5	30.2	1.2	321.4	135.5	2.9	5369.5	1410.0	4.6
SGFormer	15.0	3.8	0.9	15.4	4.4	1.0	2481.4	382.5	2.7

Comparison of training/inference time per epoch and memory cost

Scalability test of training time/memory costs w.r.t. number of nodes

Qitian Wu et al.

Experiment Results

Obs 1: one-layer attention of SGFormer is highly competitive and efficient as well

Obs 2: one-layer attention of other (all-pair) models can also yield promising acc

Conclusions

Graph Transformers can overcome several limitations of GNNs

Some open problems: 1) poor scalability (quadratic complexity)

2) lack of principled guidance for attention designs

3) inefficiency, complicated model

 [1] NodeFormer: A Scalable Graph Structure Learning Transformer for Node Classification, in NeurIPS 2022 all-pair message passing with linear complexity scale to 2M nodes handle no-graph tasks
 [2] DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, in ICLR 2023 principled global attention designs superiority for low labeled rates
 [3] SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations, in NeurIPS 2022 simple attention (one-layer single-head) 30x inference speed-up scale to 0.1B nodes

Email: echo740@sjtu.edu.cn WeChat: myronwqt228

Qitian Wu et al.