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Pitfalls of Graph Neural Networks
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 The designs of mainstream GNNs:
• Locally aggregate neighbored nodes' features in each layer
• Use neighbored nodes' embs for informative represensation

 Common scenarios GNNs show deficient capability:

hard to capture long-
range dependence
[Dai et al., 2018]

distant signals are 
overly squashed
[Alon et al., 2021]

dissimilar linked nodes 
propagate wrong signals 
[Zhu et al., 2020]

fail to distinguish 
two similar inputs
[Xu et al., 2019] 

long-range reasoning over-squashing heterophily expressivity



Inter-Dependent Data without Input Graphs 
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 GNNs require observed graphs as input:
• Solution: Pre-define a graph by some rules (e.g., k nearest neighbors)
• Limitation: the pre-defined graph is independent of downstream tasks

Observed data lies on low-
dimensional manifold
[Sebastian et al., 2021]

Physical interactions affect data 
generation yet are not observed
[Alvaro et al., 2020]

Complex hidden structures 
beyond observed geometry 
[Xu et al., 2020]



Message Passing Beyond Input Graphs
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all-pair message 
passing on layer-
specific latent 
graphs

message passing 
defined over fixed 
input topology

Graph Neural Networks Transformers

x = x =

adjacency 
matrix

node 
embs

next-layer 
node embs

attention 
matrix

node 
embs

next-layer 
node embs

Q1: computational bottleneckonly require            when using sparse 
matrix computation Q2: how to incorporate graph inductive bias



Preliminary: Notations 
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 Each node is an instance with a label

train

test

 Train/test on a dataset of nodes in a graph
 The graph size can be arbitrarily large

Notations for each node

Notations for the graph

node (input) feature
node ground-truth label
node predicted label
node embedding at the l-th layer

node number edge number

node feature matrix
label vector/matrix

adjacency matrix
node embedding matrix



Preliminary: Graph Neural Networks
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adjacency 
matrix

node 
embs

next-layer 
node embs

… …

At each layer, updating 
message for each 
centered node is only 
dependent on the 
neighbored nodes within 
the receptive field

update for each node 
(node view)

update for all nodes 
(matrix view)



Preliminary: Transformers
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attention 
matrix

node 
embs

next-layer 
node embs

… …

Scalability issue for 
large node numbers 

update for each node 
(node view)

update for all nodes 
(matrix view)

One-layer global attention 
over 10K nodes lead to 
out-of-memory on a 
single GPU with 16GB 
memory



(                             ) 

Scalable All-Pair Message Passing with O(N)
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 Kernelized softmax message passing

is a positive-definite kernel 

two summation are shared by all nodes (independent of u) 
—— only compute once 

[Mercer's theorem] 
is a random feature map 

where 

where 

computation complexity

(                           ) 

Qitian Wu et al., NodeFormer: A Scalable Graph Structure Learning Transformer for Node Classification, NeurIPS 2022 



more details: 
Appendix A

Scalable All-Pair Message Passing with O(N)
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 Kernelized Gumbel-Softmax
observation: attending on N nodes may lead to over-
normalizing (the denominator shrink the attention to zero)
solution: select dominant edges with stochastic sampling

Qitian Wu et al., NodeFormer: A Scalable Graph Structure Learning Transformer for Node Classification, NeurIPS 2022 



Scalable All-Pair Message Passing with O(N)
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Qitian Wu et al., NodeFormer: A Scalable Graph Structure Learning Transformer for Node Classification, NeurIPS 2022 



Scalable All-Pair Message Passing with O(N)
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Qitian Wu et al., NodeFormer: A Scalable Graph Structure Learning Transformer for Node Classification, NeurIPS 2022 



Scalable All-Pair Message Passing with O(N)
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Qitian Wu et al., NodeFormer: A Scalable Graph Structure Learning Transformer for Node Classification, NeurIPS 2022 



Scalable All-Pair Message Passing with O(N)
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Qitian Wu et al., NodeFormer: A Scalable Graph Structure Learning Transformer for Node Classification, NeurIPS 2022 



Pytorch Implementation
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github repo

tutorial



Input Graphs as Relational Bias
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global 
attention

relational 
bias

+

key idea: 
reinforce the weights for 
observed edges

a learnable scalar shared 
by all observed edges

Qitian Wu et al., NodeFormer: A Scalable Graph Structure Learning Transformer for Node Classification, NeurIPS 2022 



The log-likelihood of observed edges, if 
assuming data distribution as 

Input Graphs as Regularization Loss
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 Supervised classification loss

 Edge-level regularization loss

 Final loss function

Key observation:
# labeled nodes <     <<       = # node pairs 

Since we only need to query the probability 
for each observed edges, where the 
complexity of each query is 

only require O(E)  

Qitian Wu et al., NodeFormer: A Scalable Graph Structure Learning Transformer for Node Classification, NeurIPS 2022 



Dissecting the Rationale of New Objective
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 A variational perspective look at the training objective
Key insights:
Treat the latent structure estimation as a variational distribution
The all-pair message passing module induces a predictive distribution

Proposition (Underlying Effect for Learning Optimal Structures) 

Assume     can exploit arbitrary distributions over     . When the objective achieves the optimum, 
we have 1)                                                              , and 2)                             is maximized.



Approximation Error and Concentration
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Theorem 1 (Approximation Error for Softmax-Kernel) 
Assume           and           are bounded by    , and     the Positive Random Features, then with 
probability at least           ,  the approximation error gap will be bounded by

Theorem 2 (Concentration of Kernelized Gumbel-Softmax Random Variables) 
Suppose the random feature dimension      is sufficiently large, we have the convergence 
property for the kernelized Gumbel-Softmax operator

For random feature dimension      and temperature    , the error is independent of node number 

The sampled results converge to the ones induced by the Softmax categorical distribution 

Qitian Wu et al., NodeFormer: A Scalable Graph Structure Learning Transformer for Node Classification, NeurIPS 2022 



Comparative Experiments

Qitian Wu et al. 19Graph Transformers at Scale

 Experiment on small node classification benchmarks

 Experiment on large-scale datasets OGB-Proteins and Amazon2M

LDS [Franceschi et al., 
2020] 
IDGL [Chen et al., 2021] 

NodeFormer using batch size 0.1M 
only requires 4GB memory and 
hours for training on a single GPU

NodeFormer successfully scales to 
graphs with 2M nodes



Comparative Experiments
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 Experiment on image/text classification (no input graph)

NodeFormer 
also works with 
no input graph

NodeFormer 
reduces training 
time by 93.1% 

 Scalability analysis on time/space costs



Ablation Study and Hyper-parameters
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Larger random feature dimension m 
allows better approximation

Moderate temperature (tau=0.25) yields 
stably good performance

Ablation study on edge 
regularization loss and relational 
bias



Visualization of Learned Structures
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Actor

Cora

20News-Group Original Layer 1 Layer 2

The latent structures produced by NodeFormer tend to connect nodes within the 
same class and increase the overall connectivity of the whole graph 



Where Are We?
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Prior Art quadratic complexity (hard to scale to 10K nodes)

NodeFormer linear complexity (largest demonstration on 2M nodes)

Follow-up open questions:

Is there any principled guidance for the design of Transformer attentions?

Can graph Transformers handle learning tasks with low labeled rate?

- issue 1: current Transformers mostly stem from heuristic designs

- issue 2: current Transformers are data-hungry (sufficient supervision)



GNN Feed-forward as Diffusion Process
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Treat the feed-forward update of embeddings as a 
diffusion process of heat on locations

Qitian Wu et al., DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, ICLR 2023 



General Formulation of Diffusion Process
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The diffusion process of N particles driven by initial states and pairwise interactions:

gradient divergence diffusivity function

Diffusion over discrete space composed of N instances with latent structures:

Qitian Wu et al., DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, ICLR 2023 



       can have non-zero values for all entries: all-pair message passing

        is an identity matrix: message passing only through self-loops

The            diffusivity        is a measure of the rate at which the node signals spread

Diffusion with Latent Structures 
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The iterative dynamics (by explicit scheme) of diffusion induce feed-forward layers:

       only has non-zero values for observed edges: message passing over a graph

MLP GNN Transformer

Key question: How to determine a 
proper diffusivity function for learning 
desirable node representations? 



Energy-Constrained Diffusion Process
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Principle 1: particle 
states evolution 
described by a 
diffusion process

Principle 2: the 
evolutionary directions 
towards descending 
the global energy

Key insight: treat diffusivity as 
latent variables whose optimality 
is given by descent criteria w.r.t. 
a principled global energy

+

Qitian Wu et al., DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, ICLR 2023 



Closed-Form Solutions for Diffusion Dynamics

Qitian Wu et al. Graph Transformers at Scale 28

Theorem (Optimal Diffusivity Estimates for Energy-Constrained Diffusion) 
For any regularized energy over                      defined by the form

 
where                        is a concave, non-decreasing function, the diffusion process with diffusivity

yields a descent step on the energy, i.e., 

Diffusivity Inference:

State Update:

One-layer update 
of DIFFormer

Qitian Wu et al., DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, ICLR 2023 



DIFFormer: Instantiations of Diffusivity
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DIFFormer layer with simple diffusivity (DIFFormer-s): 

DIFFormer layer with advanced diffusivity (DIFFormer-a): 

complexity 
bottleneck

complexity 
bottleneck

Qitian Wu et al., DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, ICLR 2023 



DIFFormer: Extension to a Transformer Layer
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Incorporation of input graphs (if available): add graph convolution with global attention  

DIFFormer layer for updating embedding of the next layer:   

can be specified as DIFFormer-s 
or DIFFormer-a attention

Qitian Wu et al., DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, ICLR 2023 



Pytorch Implementation
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github repo

tutorial



DIFFormer: Scaling to Large-Scale Datasets
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Large-scale datasets with massive amount of data, e.g., N instances (N can be arbitrarily large)

Existing solutions: 1. neighbor sampling (slow training and limited receptive field)
                                 2. graph clustering (time-consuming pre-processing and limited receptive field)

Traditional IID learning enables mini-batch learning with a moderate batch size B << N

How can message passing networks handle large-scale graphs?

Our solution: partition instances into random mini-batches with a large batch size B 

The advantage of DIFFormer:
less/no reliance on input graphs
enables large batch size



Interpretations of MLP/GNNs as Diffusion
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MLP 

Energy function Diffusivity Illustration 

GCN 

GAT 

DIFFormer 

Qitian Wu et al., DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, ICLR 2023 



Results on Graph-based Node Classification
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Results of testing accuracy on semi-supervised node classification (20 nodes per class for train)

Qitian Wu et al., DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, ICLR 2023 



Results on Graph-based Node Classification
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Results of testing accuracy on two 
large-scale graph datasets

Proteins: 132,534 nodes,  39,561,252 edges
Pokec: 1,632,803 nodes, 30,622,564 edges

We use batch size 10K/100K for training 
DIFFormer-s using a single GPU on 
Proteins/Pokec

Test Acc and memory costs of different batch sizes on Pokec

Qitian Wu et al., DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, ICLR 2023 



Results on Image & Text Classification
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Results of testing accuracy on semi-supervised image and text classification

For image datasets, use a pretrained network to obtain embeddings of images 

Use k-nearest-neighbor to construct a graph for baseline methods GCN-kNN and GAT-kNN 

DIFFormer-s and DIFFormer-a without using any graph structure outperform the competitors 

Qitian Wu et al., DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, ICLR 2023 



Results on Spatial-Temporal Prediction
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Results of testing mean square error for predicting spatial-temporal dynamics based on history

Goal: Given the historical graph snapshot, one needs to predict node labels at the next step 
DIFFormer without using graph structure (w/o g) can sometimes yield better prediction 

Diffusivity estimates of DIFFormer-s Diffusivity estimates of DIFFormer-a 



Ablation Study and Hyperparameters
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Ablation study on attention functions (i.e., 
diffusivity parameterization)

Impact of model depth K and step size      for 
diffusion iteration



Visualization of Representations
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Instance embeddings (colored by different classes) and attention weights (edges with 
different strengths) on 20News (the left) and STL-10 (the right)



Where Are We?
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Prior Art
quadratic complexity (hard to scale to 10K nodes)

NodeFormer linear complexity (largest demonstration on 2M nodes)

Follow-up open questions:

Can Transformer architectures be simplified and scale to web-scale graphs?

(issue: the complicated architectures limit the efficiency and scalability)

data-hungry (require abundant labeled information)

DIFFormer capable of learning with limited labeled rate



SGFormer: Simplified Graph Transformers
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Observation: one-layer all-pair attention can propagate information among 
arbitrary node pairs
SGFormer: one-layer single-head global attention + auxiliary GNN

 Simple attention with linear complexity:

 Add an auxiliary GNN at the output layer:

Qitian Wu et al., SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations, NeurIPS 2023



Comparison of Existing Graph Transformers
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pos emb multi-head all-pair 
expressivity

pre-processing complexity largest demo of 
#nodes

GraphTransformer 
[Dwivedi et al. 2020]

Graphormer            
[Ying et al. 2021]

SAT [Chen et al. 2022]

GraphGPS [Rampáse 
et al. 2022]

ANS-GT [Zhang et al. 
2022]

NodeFormer [Wu et al. 
2022]

SGFormer
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Experiment Results
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Results on large node classification graphs 

Mini-batch training for proteins, Amazon2M, pokec with batch size 10K/100K   
SGFormer can be trained in full-graph manner on obgn-arxiv   

For Papers100M, using batch size 0.4M only requires 3.5 hours on a 24GB GPU  



Experiment Results
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Comparison of training/inference time per epoch and memory cost

Scalability test of training time/memory costs w.r.t. number of nodes



Experiment Results
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Obs 1: one-layer attention of SGFormer is highly competitive and efficient as well

Obs 2: one-layer attention of other (all-pair) models can also yield promising acc



Conclusions
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Graph Transformers can overcome several limitations of GNNs 
Some open problems:  1) poor scalability (quadratic complexity)

2) lack of principled guidance for attention designs
3) inefficiency, complicated model

all-pair message passing with linear complexity scale to 2M nodes

principled global attention designs superiority for low labeled rates

simple attention (one-layer single-head) 30x inference speed-up

WeChat: myronwqt228

handle no-graph tasks

scale to 0.1B nodes


