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General Learning Problems

0 Standard Machine Learning Tasks:

Training Set Test Set
Data {(7i, ¥i) fiez,. Data {(z:, ¥i) }iez..
Feature space z: € &y Feature space z; € &
Label space vi € Vi» Label space v: € Vie
Data distribution(z:,yi) ~ pi (2, y) Data distribution (i, ¥:) ~ pte(z,y)
Ui = fe(fl%')
training . testing I
the model actually minimize the model is expected to minimize
D(po(z,y), per(z,v)) D(po(z,y), piclr.y),

a Two core ML concepts: representation and generalization



Learning under Closed-World Assumptions

o e model performance
\, , |
po(z,y) D(po(,y), (2, y)) <
vatuate D1 (ps (. ), Pir (2, 9)) + Dt (2, 9), pre (. 1))
l ' ) l ' ]
fitting error generalization gap

negligibly small
perform well

Closed-world assumptions:

Input/output space is shared by train and test data Xie © Xy Ve © Vir
Data distribution stays unchanged from train to test  pu (2, y) = pie(2,v)



Towards Open-World Learning

P model performance
p@(xay) D(pe(xvy)vptf’(ajay)) é
Dl (pe(xv y)vptr(‘r7 y)) + DQ(ptr(xa y)apm("];a y)>
l ' ) \ ' J
fitting error generalization gap
e (z,y) can be
model fails or arbitrarily large
performs poorly

Open-world assumptions: from training to testing

Input/output space goes through expansion X C Xio, Vir C Vie
Data distribution shifts with unknown factors  p:.(z,vy) # pee(z, y)



From Closed-World to Open-World Learning

How to learn a desirably
effective model under
distribution shifts?

The challenging open research problems:

lﬁm [How to train a model that can generalize to 00D data?: -> 00D Generalization




Out-of-Distribution Generalization

training data testing data

N ‘-

-y
W

in-distribution (IND) data <------------ 2

00D Generalization:

— Train a robust classifier that can perform

_ well on testing samples from disparate
- perform well on IND testing data distributions than training data

2: perform well on 00D testing data



Out-of-Distribution Data from Open World

‘ ¢ 1t
R \\\}f\ : Ngr‘ NoP eV ghé , 9F poA , » uﬂ?ﬂf
1\ o LY |
| A I.'I f - ’XQ |
I Lbor @ 'P‘ff ol '
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______ % & t t ty
item o) user — social link seessInterest
Graph data from multiple domains Dynamic temporal networks

a Distribution shifts cause different data distributions Pyqin (D) # Piesi (D)
0 New data from unknown distribution are unseen by training

How to guarantee desired performance on data from new distributions?




Challenges of Graph Data Modeling
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truck d‘h’iﬂ i
(wia yz) ~ P(% y) (4, yi) ~ plz, y‘M)
each instance is drawed from the same instances have inter-connection and cannot

data distribution independently (i.i.d.) be treated as 1.i.d. samples



Node-Level Distribution Shifts

Q Graph notation: Agraph G = (A, X), adjacency matrix A = {a,,|v,u € V}
node features X = {z,|v € V'}, node labels Y = {y,|v € V'}
p(G,Yle) = p(Gle)p(Y|G,e)
where e denotes environment (that affects data generation)
Q Out-of-distribution generalization on graphs:

, 1
learn a classifier A{mfm r?gg]EGNp(Gleze) m Z Eymp(y|Gu=Gy,e=e} |l (f (Gv), Y)]
robust for worst cas veV

» A graph G can be divided into pieces of ego-graphs { (G, Yv) fvev
« The data generation process: 1) the entire graph is generated via G ~ p(Gle),
2) each node's label is generated viay ~ p(y|Gv = G, €)

Qitian Wu, et al., “Handling Distribution Shifts on Graphs: An Invariance Perspective”, in ICLR'22



Causal Invariance Principle

There exists a portion of causal
information within input ego-graph for
prediction task of each individual node

! X1 : publish avenue

Exg : citation index
Y : paper's sub-area

" e :time of publication

Arjovsky, et al., “Invariant Risk Minimization”.

D DD causalfeatures

(] non-causal features

node features =, = |z, causal features

. 1
predictive model ¥, = ] Z 9+ oz
v ENU

u
non-causal features

ideal solutions |01, 0] = [1,0]

Rojas-Carulla, et al., “Invariant models for causal transfer learning”.



Explore-to-Extrapolate Risk Minimization

2 Initial version: jointly minimize the expectation and variance of risks
mgin Vel L(G°, Y% 0)] + BE[L(G®,Y“; 0)]

Key issue: environment/domain labels for data are unavailable or ambiguous

A Final version: adversarial training multiple context generators

Risk
Extrapolation > mmVar({L(gw (G),Y;0):1<k<K})+ ZL Gur ( +0)

Environment . .
Exploration st g, wi] = a’rgwlmaXKVar({L Y’ 0):1<k<K})

. V-0 ky 0) 1/ Gk ! cor)te_xt generator:_augment
wherek(g (G), Y )] LG, \V] 1;/ So(Go) o). training data and simulate

multiple environments

risk function for data under
the k-th environment

Qitian Wu, et al., “Handling Distribution Shifts on Graphs: An Invariance Perspective”, in ICLR'22



Experiment on Cross-Graph Transfer

training data model J testing data
‘ graph 1 ) e ~
h 2 unseen
grap _
.. o _different _ _______- _ graph
- - domains \ /
mm ERM 65 m ERM ——ry
%55 I I m== EERM % i II ms= EERM é’m II I s
gl L PR L] PR L) Y

(a) GCN (b) GAT (c) GCNII

EERM achieves up to 7.0% (resp. 7.2%) impv. on ROC-AUC (resp. accuracy) than ERM

Qitian Wu, et al., “Handling Distribution Shifts on Graphs: An Invariance Perspective”, in ICLR'22



Experiment on Temporal Graph Evoluation

training data

testing data

|

|

|

|

graph graph graph | graph
snapshot 1 snapshot 1 snapshotM | ! snapshot K
|
[ model
N - ERM - ERM Method | 20142016  2016-2018  2018-2020

g " ERM- SAGE 4210911397 39.92+2.53  36.72 4 2.47
= EERM- SAGE | 41.55+0.68 & 4036129 3895+ 157
? ERM-GPR | 47254055 4507 +057 41.53+0.56
o T Gramhsace T PYePrenn | © " EERM-GPR |[49:88:£049 | 48:50+0.52 | 4488 £0.62

EERM achieves up to 9.6%/10.0% impv using GraphSAGE/GPR-GNN as backbones

Qitian Wu, et al., “Handling Distribution Shifts on Graphs: An Invariance Perspective”, in ICLR'22



Graph-Level Distribution Shifts - Molecules

Key observation: the (bio)chemical properties of a molecule are usually
associated with a few privileged molecular substructures

Environment: Scaffold Environment: Size
Scaffold 1 Scaffold 2 _ _
3C-Ring 6C-Ring Smaller Size Larger Size
[ ] [ )

A O ﬂ A

o %7
t \ o 190 \3\0/. . I " .\0((/
/ ({ e
\2‘0 @ \ %
K
Cyclopropanol 1,4-Cyclohexanediol Formic Acid Citric Acid

the shared hydroxy (-OH)/ carboxy (-COOH) =) good water solubility

Nianzu Yang, et al., “Learning Substructure Invariance for Out-of-Distribution Molecular Representations”, in NeurlPS’22



MoleOOD: Learning Substructure Invariance

a) Environment Inference

f;_g
Environment 2}
(G’ Y) — Classifier |:| l
gk (e ’ G,y ) &
| . Lelbo
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<

- N
Complete
L Dj:l:lj Einv
'g : |query
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(b) Molecular Representation Learning

a two-stage training strategy to search for optimal parameters
» 1) optimizing the environment-inference model: ", 7" ¢ argmax Lejo(7, &; grem)
» 2) optimizing the molecule encoder and the predictor: §* « arg mein Liny(0; G 1)

Nianzu Yang, et al., “Learning Substructure Invariance for Out-of-Distribution Molecular Representations”, in NeurlPS’22



Distribution Shifts in Sequential Prediction

- Traditional models :

g SpuousComelation 73, |y Spurious Comelation 3
!  Past Events
?cba . N - Learning spurious correlation
. S | e . = | between past events (S) and
| Train Test | next event (Y)

(Offline) | (Online)

Time Line T
| e e Winter ___:

- § > ¥ from model formulation $ = f(5; 0)

. C > Y:from learning process
0% = argmin B (s ) ps,vic=c,) ! (f($30),y)]

(a) Real-world data (b) Traditional model .
generation P(Y'|S) Py(Y|S) C is the confounder !

Chenxiao Yang, et al., “Towards out-of-distribution sequential event prediction: A causal treatment”, in NeurlPS’22



Causal Intervention for Sequential Prediction

- Proposed interventional models :

—————————————————————————————

Train Test k
(Offline) | (Online):

— | Time Line e

Winter t_ Learning causality
| between past events (S)

: Predlctlon ;

" =g | and next event
55 “?"" % ®)

(Objective with do-operation)
PLY|S) = Py(Y|do(S))

: simulates an ideal data-generating process where S is
generated independently from C by blocking the backdoor

(c) Our interventional =
model Py(Y|do(S)) pathS « C—>Y

Chenxiao Yang, et al., “Towards out-of-distribution sequential event prediction: A causal treatment”, in NeurlPS’22



Inherent Generalization of GNNs

e Dessgitied] M!,;f’ il Key question: Why GNNs are
N o g, 7, more powerful than MLP?
E
= R T
' PMLP: Propagational MLP |
g i+ PMLP=MLP during training |
L | :

- PMLP=GNN during testing

a Consistent phenomenons across sixfeen benchmarks:

« PMLP significantly outperforms MLP The superiority of GNNs over MLP
comes from better test-time
* PMLP performs close to GNN generalization

Chenxiao Yang, et al., “Graph Neural Networks are Inherently Good Generalizers: Insights by Bridging GNNs and MLPs”,
in ICLR'23



Theoretical Understandings of GNNs

A *
0.8 ,&K
2 0.6 ;
Q G P
=204 PMLP i& , . A
== a2
& 0.2 Training Data
0.0 Range

(d)

Q By NTK theory we prove:

Compared to MLP, GNNs have better
extrapolation ability, i.e., generalizing to
00D data outside training support

PMLP

0 100 200 300
Epochs

(b)

R(f) R -TR(f)
Large

: Small 4

GNN | Small | Generalization Gap

(©)

Theorem 5. Suppose all node features are normalized, and the cosine similarity of node x; and the
average of its neighbors is deonoted as o; € [0, 1]. Then, the convergence rate for fomip(x) is

Co D ieN,ufoy (@ di) 7! ¢

where Qi = min{a; }ic Nou{o} € [0, 1], and cfmm > 1 denotes the maximum node degree in the
testing node x’s neighbors (including itself).

Chenxiao Yang, et al., “Graph Neural Networks are Inherently Good Generalizers: Insights by Bridging GNNs and MLPs”,

in ICLR'23



From Closed-World to Open-World Learning

How to learn a desirably
effective model under
distribution shifts?

The challenging open research problems:

:How to train a model that can generalize to 00D data?: -> 00D Generalization
1 iHow to train a model that can identify OOD data? —-> 00D Detection




Out-of-Distribution Detection

training data testing data

out-of-distribution (O0D) data *

in-distribution (IND) data <------------ 20

00D Detection:

—> — Train a robust classifier that can identify

_ samples from disparate distributions
I perform well on IND testing data than (in-distribution) training data
2: identify OOD testing data




OOD Detection for Graph Data

= For a classifier f , our goal is to find a proper decision function that returns
the estimation score whether the given input is 00D or not:

Gx. G f) 1, X is an in-distribution instance,
Xy Yx; J) = . . ..
0, x is an out-of-distribution instance,
Y = f(X) H

— > | GNN | —>




GNN-based Node-Level Prediction

= Adopt graph neural networks (GNNs) to compute node representations:

AR ¢

Y

7 _ 4 (D—1/2AD—1/2Z(Z—1)W(Z)) (G [Zz('l_l)]'iEI

= The GNN classifier gives a predictive distribution for node labels:

eho(3%,9x) 1y

p(y | x,Gx) = ZC CT R where ZEL) = hg(x, Gx)
c=1

= |f we assume E(x, Gx,y; ho) = —ho(X, Gx)[y @s an energy function, we have

6—E(X,Qx,y) 6_E(Xagx>y)

p(ylx, Gx) = >, e PoGet) T e B0G)

a Boltzmann distribution

C
E(x, Gx; hg) = —log Y _ ehot:9=)ia free energy for 00D detection

c=1

Qitian Wu, et al., “Energy-based Out-of-Distribution Detection for Graph Neural Networks”, in ICLR'23



Energy Models for OOD Detection

- For a given GNN classifier 7 (%, Gx) . we have the initial energy as

E(O) — [E(Xiv ng? h’@)]’iEI where E(X Ox; h9 — log Z o (%:Ge) e

» Then we consider propagating the energy values along graph structures

E® = oE®D 4 (1 - a)DPAE*-D  where E® = [E["]ics

Intuition: connected nodes in the graph tend to be sampled from similar distributions

The energy propagation facilitates consensus for the 00D estimation results between
the target node and its neighboring nodes.

Qitian Wu, et al., “Energy-based Out-of-Distribution Detection for Graph Neural Networks”, in ICLR'23



Loss Functions for Training

= |f the training data only contains , use supervised loss:
Lsup = Z ( ho(Xi, Gx )iy, + logz o (5,9, )] ) [GNN—SafeJ
1€,
= |f the training data contains , we additionally consider the
regularization loss: L., + ALlpey [GNN—Safe++ ]

Eref

‘I ; Z (ReLU( (xis Go.: ) — ))2+110(ReLU (tout "y (Xj,ng;hg)))2

) extra 00D training data

The optimal predicted logits given by L., is the same as the counterpart of optimal
energy by Ly eg.

Qitian Wu, et al., “Energy-based Out-of-Distribution Detection for Graph Neural Networks”, in ICLR'23



Main Results on Real-World Datasets

00D detection results on Twitch and Arxiv

Twitch Arxiv

Model | OODExpo | yy;p0c AUPR FPR IDACC | AUROC AUPR FPR ID ACC
MSP No 3359 49.14 9745 6872 | 6391 7585 9059  53.78
ODIN No 5816 7212 9396 7079 | 5507 6885 1000 5139
Miahalariobis No 5568 6642 9013 7051 | 5692  69.63 9424  51.59
Energy No 51.24 60.81 91.61  70.40 64.20 75.78  90.80  53.36
GKDE No 4648 6211 95.62 6744 | 5832 7262 9384 5076

GPN No 5173 6636 9551  68.09 i i i )

GNNSAFE No 66.82 7097 7624 7040 | 7106 8044 87.01  53.39
OE Yes 5572 7018 9507 7073 | 69.80  80.15 85.16  52.39
Energy FT Yes 84.50 88.04 61.29 70.52 71.56 8047 80.59  53.26
GNNSAFE++ Yo 9536 9712 3357 7018 | 7477 8321 7743  53.50

Metric: AUROC, AUPR, FPR for detection scores of IND-Te and O0OD-Te samples
Twitch (multi-graph dataset): use nodes in different graphs for IND/OOD

Arxiv (a temporal graph dataset): use nodes at different times for IND/OOD

Qitian Wu, et al., “Energy-based Out-of-Distribution Detection for Graph Neural Networks”, in ICLR'23



Energy Score Visualization

- GNNSafe w/o energy propagation - GNNSafe - GNNSafe++
T = : = i
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Energy propagation and regularization can both help to enlarge the discrimination gap

Qitian Wu, et al., “Energy-based Out-of-Distribution Detection for Graph Neural Networks”, in ICLR'23



Generative Models for Graph OOD Detection

- Define the generative models of node features, graph = o = = ~a
structures and node labels as two-component mixtures. £
po(A|X, e) = po(A|X)°po(A[X)'°, g.
po(y1X, A, e) = po(y|X, A)°po(y|X, A)' . i
""" BiasedRatio
- Compute the OOD scores for testing data by Bayesian rule: - -
e, A X e)p(X)pg(AlX, e 3 3 . A
pstol A K po(e; A, X) _  ple)p(X)po(AX,e) ! m
Ze pg(E,A,X) Ze p(E)p(X)pg(Alij) - p - 00 0
9 o
4 A 00D Score . (SODScoorei ?

Theoretical Justifications:

The model can automatically identi tliers in
e model can automatica y de fyou ers Zenan Li et al., “GraphDE: A Generative Framework for

training data and 00D samples from testing data Debiased Learning and Out-of-Distribution Detection on
N ~ Graphs”, in NeurlPS'22




From Closed-World to Open-World Learning

How to learn a desirably
effective model under
distribution shifts?

—)

The challenging open research problems:

o |

( How to train a model that can generalize to 00D data?:

How to train a model that can identify OOD data?

—> 00D Generalization

\——> 00D Detection

How to enable a model to handle new unseen enhhesﬂ—» OO0D Extrapolation




New Entities from Open World

0 New users/items In 2.2 2,22 ‘: > New Users
recommender systems | = & - Q,

a New features collected /™ ;7 2 t
by new released Y SNV Y SN A
platforms for decisions  1[eilefee], [zl oo ooz | New Featuress

a New deyelo_ped drugs p """ p New Drugs
or combinations for . th >
treatment - X a b

How to handle unseen entities that are not exposed to model training?




Feature Space Extrapolation

0 Open-world feature extrapolation:

Training Set domain Test Set
Data {(x:, i) }ier,, generalization Data {(xi, ') }ier,.
Feature space x; € &,, = {0,1}” —»| Feature space x; € x,. = {0,117
Label space v: € V Xir C Xte] Label space yir € V

features label Training Inference .

N0 [ O 7 9 o o Key questions:
4 |training data % (1)_)8 ; 88 o @.8 ;.8 90 Can we enable neural networks
g 21| o] 0 006 N Q... |tohandleaugmented input
T et ||| O o | dimensions without re-training?

Qitian Wu et al., “Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach”, in NeurlPS'21



Input Data as Graphs

a The input feature-data matrix can be treated as a bipartite graph

" Feature nodes Fyr = {f;}1,

Instance nodes I, = {0;}iv,

Input data matrix
Xy = [Xilier,, € {0,137 ) -

_ Adjacency matrix X;,

Observed Data Matrix Feature-Data Graph Advantage of graph representation:
fifa 3 fa fs o1 fi Variable-size for features/instances

0|01 010 AN I

0o[1 11 00 . f3 Key insight:

030 1 0 11 j‘> Ofo" fa Convert inferring embeddings for new features

040 01 01 04 ¥ to inductive representation on graphs

Qitian Wu et al., “Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach”, in NeurlPS'21



Extrapolation with Message Passing

Observed Data Matrix Feature-Data Graph GNN Model
— - ) Reasoning
'] <01 > .f 1 BT 01 <01 >
fi fa s fu fs -7 S fs TN afs N f5 B .
1 S N\ f, B High-level
o110 10 1 O W] 02 ©2) 02)
021 1/1 00 ) s mmo | | (74 i fa fa| B model for
! | -- W 03 Al 03 03 feature emb
o3/[0 1 \ P4 T f5 f5| W learning
‘ ' g ©4> 04 <04
o4 0 01 0 1] | EEIOL f5| B 04 .
£ S > !
“ + “ ----TsTsEE===" P - -
‘ rediction
data/feature nodes '\‘ 0 BT 1] 8“ 8 8
. 1 | T R K Low-level
B ] BT ] node embeddings | > o
[ o—pmm @ g0 o O O O |mmp model for
——>  message passing S O KR O . -
1 — T T O prediction
------ > data flow 1 —IE ] O O QO
- - replace & update | -I—LEmbed::ling Layer 4 Classifier Network }

Backbone Network

Qitian Wu et al., “Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach”, in NeurlPS'21



Results on Advertisement Click Prediction

Table. ROC-AUC results for eight test sets (T1 - 18) on Avazu and Criteo

Dataset | Backbone | Model ] Tl T2 T3 T4 TS5 T6 T7 T8 Overall

Base 0.666 0.680 0.691 0.694 0.699 0.703 0.705 0.705 0.693 + 0.012
NN Pooling | 0.655 0.671 0.683 0.683 0.689 0.694 0.697 0.697 0.684 £ 0.011
FATE | 0.689 0.699 0.708 0.710 0.715 0.720 0.721 0.721 0.710 = 0.010

Avazu
Base 0.675 0.684 0.694 0.697 0.699 0.706 0.708 0.706 0.697 + 0.009
DeepFM | Pooling | 0.666 0.676 0.685 0.685 0.688 0.693 0.694 0.694 0.685 4 0.009
FATE 0.692 0.702 0.711 0.714 0.718 0.722 0.724 0.724 0.713 +£0.010
Base 0.761 0.761 0.763 0.763 0.765 0.766 0.766 0.766 0.764 + 0.002
NN Pooling | 0.761 0.762 0.764 0.763 0.766 0.767 0.768 0.768 0.765 £ 0.001
Criteo FATE 0.770 0.769 0.771 0.772 0.773 0.774 0.774 0.774 0.772 £+ 0.001

Base 0772 0.771 07772 0.772 0.774 0774 0.774 0.774 0.773 £ 0.001
DeepFM | Pooling | 0.772 0.772 0.773 0.774 0.776 0.776  0.776  0.776  0.774 £ 0.002
FATE | 0.781 0.780 0.782 0.782 0.784 0.784 0.784 0.784 0.783 £ 0.001

QO FATE achieves significantly improvements over Base/Pooling with different
backbones (DNN and DeepFM)

Qitian Wu et al., “Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach”, in NeurlPS'21



Input Space Expansion - Cold-Start Users

J open-world recommendation: new unseen users appear in test data

user clicking history ( embedding matrix )
.. M ‘ lvﬁ > ﬂone-hot encoding user embedding
training _ reconstruction us [oJo]1 o] X =
1 o) =
\_ J
user clicking history prediction ( augmented )
o) embedding matrix
. - new user's new user's
testing o existing users ﬂ one-hot encoding embedding
,,ﬂ 65) ' us [ofoJoJo]1] X = 4
P‘F’“
— - 7 new user
s \ Y,

0 Challenges: For new users, there is no available embeddings from model training

Can we enable a recommendation model to directly generalize to new users ?




Extrapolation with Graph Structure Learning

Q Basic idea:
* leverage one group of users to express another

* learn a latent graph over users
* message passing from existing users to new ones

embedding matrix

key user's key user's
one-hot encoding embedding
u Lo i]e] - EEDIT]
user-item ratings 7 i
5[o]2]a]o}--K :
\ “_:; user-user relation
olojolal1]ok~"" T . —>
2 [+, .75 learning model
3l4lolo|3 550
5/0[o0[2]5 k> query user's
P embeddin
%E; 0 g ; 0101 g 3y user-user relation *.:l:l:lg:]
o L0 QIS 5> learning model

Key insight: user preferences
share underlying proximity
that induces latent graphs

(

N

. key user )
key user one-hot id sribad dig meta latents KV - query user
1[o]o] o] o} >R >[TTT+—> & Ly 8

K/V g embedding
oj1|ojo|of > [T TFH—>» g
K/V é
olof[ofo] 1 >EEEM>TTTI——>| &
query user rating vector Q T
5/0|13|0|0f2
{ \ item
0 O OO pedings
A 4 query user
initial state
- J

J

Qitian Wu et al., “Towards Open-World Recommendation: An Inductive Model-based Collaborative Filtering
Approach’, in ICML'21



Results on Recommendation Benchmarks

Q Task 1: Transferring to few-shot users with limited interaction records
0 Task 2: Generalizing to zero-shot users unseen by training

Douban ML-100K ML-1M
Method Inductive Feature = RMSE NDCG RMSE NDCG RMSE NDCG

Al FS AN FS Al FS Al FS Al FS Al FS : .
PMF No No 0737 0.718 0.939 0.954 0.932 1.003 0.858 0.843 0.851 0.946 0.919 0.940 200 R e :
NNMF No No 0.729 0.705 0.939 0.952 0.925 0.987 0.895 0.878 0.848 0.940 0.920 0.937 oood 2 i s 08
GCMC No No 0.731 0.706 0.938 0.956 0.911 0.989 0.900 0.886 0.837 0.947 0.923 0.939 5 ‘o1 _ = S0 0s e 20
i 0.00035 _g m"’.‘) [ .-.
NIMC Yes Yes 0732 0745 0.928 0.931 1.015 1.065 0.832 0.824 0.873 0.995 0.889 0.904 2. oo 50701 e T .
BOMIC Yes Yes 0.735 0747 0.923 0.925 0.931 1.001 0.828 0.815 0.847 0.953 0.905 0.924 3 | L] Z Tt
F-EAE Yes No 0738 - - - 0920 - . - 0860 - - - 2
IGMC Yes No 0.721 0.728 - - 0.905 0.997 - - 0857 0.956 - s : ST Ne——
IDCF-NN (ours)  Yes No 0.738 0.712 0.939 0.956 0.931 0.996 0.896 0.880 0.844 0.952 0.922 0.940 R L e R e

IDCF-GC (ours)  Yes No 0.733 0.712 0.940 0.956 0.905 0.981 0.901 0.884 0.839 0.944 0.924 0.940

+4.0% (resp. +17.4%) impv. of RMSE (resp. NDCG) on new users

Qitian Wu et al., “Towards Open-World Recommendation: An Inductive Model-based Collaborative Filtering
Approach’, in ICML'21
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