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General Learning Problems

 Standard Machine Learning Tasks:                  

Data
Training Set Test Set

Feature space
Label space

Data
Feature space
Label space

Data distribution Data distribution

Model

 Two core ML concepts: representation and generalization             

training testing

the model actually minimize the model is expected to minimize



Learning under Closed-World Assumptions

Closed-world assumptions:

Model

Train

perform well

Evaluate

model performance

fitting error generalization gap

negligibly smalldepend on model 
capacity

Input/output space is shared by train and test data
Data distribution stays unchanged from train to test



Towards Open-World Learning

model fails or 
performs poorly

Train

Evaluate

Model

model performance

fitting error generalization gap

can be 
arbitrarily largetoo small to be good

Open-world assumptions: from training to testing
Input/output space goes through expansion
Data distribution shifts with unknown factors



From Closed-World to Open-World Learning

Train

Evaluate

The challenging open research problems:
How to train a model that can generalize to OOD data?

Train

Evaluate

How to learn a desirably 
effective model under 

distribution shifts?

OOD Generalization



Out-of-Distribution Generalization

Train a robust classifier that can perform 
well on testing samples from disparate 
distributions than training data 

Model

training data testing data

out-of-distribution (OOD) data

1: perform well on IND testing data

in-distribution (IND) data

OOD Generalization:

2: perform well on OOD testing data



Out-of-Distribution Data from Open World

Graph data from multiple domains Dynamic temporal networks

 Distribution shifts cause different data distributions
 New data from unknown distribution are unseen by training

How to guarantee desired performance on data from new distributions?



Challenges of Graph Data Modeling 

each instance is drawed from the same 
data distribution independently (i.i.d.)

instances have inter-connection and cannot 
be treated as i.i.d. samples



 Out-of-distribution generalization on graphs:

 Graph notation: A graph                    , adjacency matrix                              
node features                            , node labels

    where     denotes environment (that affects data generation)

Node-Level Distribution Shifts

• A graph      can be divided into pieces of ego-graphs
• The data generation process: 1) the entire graph is generated via                        ,
    2) each node's label is generated via 

loss function for 
node-level prediction

learn a classifier 
robust for worst case

Qitian Wu, et al., “Handling Distribution Shifts on Graphs: An Invariance Perspective”, in ICLR'22



Causal Invariance Principle

There exists a portion of causal 
information within input ego-graph for 
prediction task of each individual node

The “causal” means two-fold properties:
   1) invariant across environments
   2) sufficient for prediction 

causal features

non-causal features

Arjovsky, et al., “Invariant Risk Minimization”. Rojas-Carulla, et al., “Invariant models for causal transfer learning”.

node features

predictive model

ideal solutions

causal features

non-causal features



  Initial version: jointly minimize the expectation and variance of risks

Explore-to-Extrapolate Risk Minimization

  Final version: adversarial training multiple context generators

where                                                                                  . 

Key issue: environment/domain labels for data are unavailable or ambiguous

context generator: augment 
training data and simulate 
multiple environments

Environment 
Exploration

Risk 
Extrapolation

predictor: graph neural 
networks for classification

risk function for data under 
the k-th environment

Qitian Wu, et al., “Handling Distribution Shifts on Graphs: An Invariance Perspective”, in ICLR'22



Experiment on Cross-Graph Transfer

EERM achieves up to 7.0% (resp. 7.2%) impv. on ROC-AUC (resp. accuracy) than ERM

training data testing datamodel
graph 1
graph 2
…

unseen 
graphdifferent 

domains

Qitian Wu, et al., “Handling Distribution Shifts on Graphs: An Invariance Perspective”, in ICLR'22



Experiment on Temporal Graph Evoluation 

EERM achieves up to  9.6%/10.0% impv using GraphSAGE/GPR-GNN as backbones

training data testing data

graph
snapshot 1

…graph
snapshot 1

graph
snapshot M

graph
snapshot K

… …

model

Qitian Wu, et al., “Handling Distribution Shifts on Graphs: An Invariance Perspective”, in ICLR'22



Graph-Level Distribution Shifts - Molecules
Key observation: the (bio)chemical properties of a molecule are usually 
associated with a few privileged molecular substructures

the shared hydroxy (-OH)/ carboxy (-COOH)             good water solubility
Nianzu Yang, et al., “Learning Substructure Invariance for Out-of-Distribution Molecular Representations”, in NeurIPS’22



MoleOOD: Learning Substructure Invariance
(a) Environment Inference

query

(b) Molecular Representation Learning

Complete 
Encoder 

Substructure 
Encoder 
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 two-stage training strategy to search for optimal parameters
• 1) optimizing the environment-inference model:
• 2) optimizing the molecule encoder and the predictor:

Nianzu Yang, et al., “Learning Substructure Invariance for Out-of-Distribution Molecular Representations”, in NeurIPS’22



Distribution Shifts in Sequential Prediction

Chenxiao Yang, et al., “Towards out-of-distribution sequential event prediction: A causal treatment”, in NeurIPS’22



Causal Intervention for Sequential Prediction

Chenxiao Yang, et al., “Towards out-of-distribution sequential event prediction: A causal treatment”, in NeurIPS’22



Inherent Generalization of GNNs

Chenxiao Yang, et al., “Graph Neural Networks are Inherently Good Generalizers: Insights by Bridging GNNs and MLPs”, 
in ICLR'23

 Consistent phenomenons across sixteen benchmarks:
• PMLP significantly outperforms MLP
• PMLP performs close to GNN

PMLP: Propagational MLP 
• PMLP=MLP during training
• PMLP=GNN during testing

Key question: Why GNNs are 
more powerful than MLP?

The superiority of GNNs over MLP 
comes from better test-time 
generalization



Theoretical Understandings of GNNs

 By NTK theory we prove: 
Compared to MLP, GNNs have better 
extrapolation ability, i.e., generalizing to 
OOD data outside training support

Chenxiao Yang, et al., “Graph Neural Networks are Inherently Good Generalizers: Insights by Bridging GNNs and MLPs”, 
in ICLR'23



From Closed-World to Open-World Learning

Train

Evaluate

The challenging open research problems:
How to train a model that can generalize to OOD data?
How to train a model that can identify OOD data?

Train

Evaluate

How to learn a desirably 
effective model under 

distribution shifts?

OOD Generalization

OOD Detection



Out-of-Distribution Detection

Train a robust classifier that can identify 
samples from disparate distributions 
than (in-distribution) training data 

Model

training data testing data

out-of-distribution (OOD) data

1: perform well on IND testing data

in-distribution (IND) data

OOD Detection:

2: identify OOD testing data



OOD Detection for Graph Data

 For a classifier     , our goal is to find a proper decision function that returns 
the estimation score whether the given input is OOD or not:



GNN-based Node-Level Prediction
  Adopt graph neural networks (GNNs) to compute node representations: 

  The GNN classifier gives a predictive distribution for node labels: 

  If we assume                                                  as an energy function, we have  

a Boltzmann distribution

free energy for OOD detection

where

Qitian Wu, et al., “Energy-based Out-of-Distribution Detection for Graph Neural Networks”, in ICLR'23



Energy Models for OOD Detection
  For a given GNN classifier                    , we have the initial energy as

where

  Then we consider propagating the energy values along graph structures

where

Intuition: connected nodes in the graph tend to be sampled from similar distributions

The energy propagation facilitates consensus for the OOD estimation results between 
the target node and its neighboring nodes. 

Proposition 1 (informal)

Qitian Wu, et al., “Energy-based Out-of-Distribution Detection for Graph Neural Networks”, in ICLR'23



extra OOD training data

Loss Functions for Training
  If the training data only contains in-distribution data, use supervised loss:

  If the training data contains extra OOD data, we additionally consider the 
regularization loss:

GNN-Safe

GNN-Safe++

Qitian Wu, et al., “Energy-based Out-of-Distribution Detection for Graph Neural Networks”, in ICLR'23

The optimal predicted logits given by          is the same as the counterpart of optimal 
energy by         . 

Proposition 2 (informal)



Main Results on Real-World Datasets
OOD detection results on Twitch and Arxiv

 Metric: AUROC, AUPR, FPR for detection scores of IND-Te and OOD-Te samples
 Twitch (multi-graph dataset): use nodes in different graphs for IND/OOD 
 Arxiv (a temporal graph dataset): use nodes at different times for IND/OOD
Qitian Wu, et al., “Energy-based Out-of-Distribution Detection for Graph Neural Networks”, in ICLR'23



Energy Score Visualization

Energy propagation and regularization can both help to enlarge the discrimination gap 
Qitian Wu, et al., “Energy-based Out-of-Distribution Detection for Graph Neural Networks”, in ICLR'23



Generative Models for Graph OOD Detection
   • Define the generative models of node features, graph 
structures and node labels as two-component mixtures.

• Compute the OOD scores for testing data by Bayesian rule:

Theoretical Justifications:
The model can automatically identify outliers in 
training data and OOD samples from testing data Zenan Li et al., “GraphDE: A Generative Framework for 

Debiased Learning and Out-of-Distribution Detection on 
Graphs”, in NeurIPS'22



From Closed-World to Open-World Learning

Train

Evaluate

The challenging open research problems:
How to train a model that can generalize to OOD data?
How to train a model that can identify OOD data?

Train

Evaluate

How to learn a desirably 
effective model under 

distribution shifts?

OOD Generalization

OOD Detection
How to enable a model to handle new unseen entities? OOD Extrapolation



New Entities from Open World
 New users/items in 

recommender systems

 New features collected 
by new released 
platforms for decisions

 New developed drugs 
or combinations for 
treatment

How to handle unseen entities that are not exposed to model training?



Feature Space Extrapolation

 Open-world feature extrapolation:                  

Data
Training Set Test Set

Feature space
Label space

Data
Feature space
Label space

domain
generalization

Qitian Wu et al., “Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach”, in NeurIPS'21

Key questions:
Can we enable neural networks 
to handle augmented input 
dimensions without re-training?



 The input feature-data matrix can be treated as a bipartite graph

Input Data as Graphs  

Input data matrix Feature nodes
Instance nodes
Adjacency matrix

Key insight:
Convert inferring embeddings for new features 
to inductive representation on graphs

Advantage of graph representation:
Variable-size for features/instances

Qitian Wu et al., “Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach”, in NeurIPS'21



Extrapolation with Message Passing

High-level 
model for 
feature emb 
learning

Low-level 
model for 
prediction

Reasoning

Prediction

Qitian Wu et al., “Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach”, in NeurIPS'21



Results on Advertisement Click Prediction 
Table. ROC-AUC results for eight test sets (T1 - T8) on Avazu and Criteo

  FATE achieves significantly improvements over Base/Pooling with different 
backbones (DNN and DeepFM)

Qitian Wu et al., “Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach”, in NeurIPS'21



Input Space Expansion - Cold-Start Users

training

testing

 open-world recommendation: new unseen users appear in test data
user clicking history

prediction

new user

?
?
?

existing users

reconstruction

user clicking history

  Challenges: For new users, there is no available embeddings from model training

Can we enable a recommendation model to directly generalize to new users ? 



Extrapolation with Graph Structure Learning

 Basic idea:
• leverage one group of users to express another
• learn a latent graph over users
• message passing from existing users to new ones

Key insight: user preferences 
share underlying proximity 
that induces latent graphs

Qitian Wu et al., “Towards Open-World Recommendation: An Inductive Model-based Collaborative Filtering 
Approach”, in ICML'21



Results on Recommendation Benchmarks

 Task 1: Transferring to few-shot users with limited interaction records
 Task 2: Generalizing to zero-shot users unseen by training 

+4.0% (resp. +17.4%) impv. of RMSE (resp. NDCG) on new users
Qitian Wu et al., “Towards Open-World Recommendation: An Inductive Model-based Collaborative Filtering 
Approach”, in ICML'21
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