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Background and Motivation

a Machine learning models perform 0 Real-world situations are OPEN,
well in CLOSED-world situations dynamic and also uncertain
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Perform well
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More Specific Examples

a New users/items in ;: ".' ';' ""; "": New Users
recommender systems ! C . -0 ' mp ?O Q’
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Technical Challenges

a Open-world learning requires out-of-distribution generalization
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Technical Challenges

a Retraining model from scratch for each new data is time-consuming

Qitian Wu
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Retraining from scratch
Time-consuming !




Technical Challenges

a Incremental learning or finetuning may lead to over-fitting new data
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Training distribution Incremental / Continual learning
Catastrophic forgetting !
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Technical Challenges

a Incremental learning cannot deal with expanded feature space
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Training distribution

new X
Expanded feature space

Continual learning is not applicable !
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Background for Recommendation

0Q Model-based Collaborative Filtering = Matric Factorization Model

0 Basic idea:
user-item rating matrix

factorize {

user embeddings —__
item embeddings —

reconstruction matrix

1 CF models cannot handle new unseen users in open-world recommendation

user clicking history ( embedding matrix )
.. M ‘ lfﬁ > #one-hot encoding user embedding
training reconstruction u3 [oJo[1]0] X = B
Qe = k )
user C|iCking hlstory prediCtion ( augmented )
N embedding matrix
. L new user's new user's
serving o existing users # one-hot encoding embedding
|| B 6 E) : us |olofofo]1] X — s
@ — — / new user
s N\ ~
itian Wu pen-world Extrapolation via Graph Learnin
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Collaborative Filtering

Q Formulation of CF model for RecSys:
* a user-item interaction matrix R = {ry; } prxn
assume user latent factors P = {p, }rrx4

assume item latent factors Q =
consider an interaction model 7,,; =

E L T"LL’L? T"LL’L

target objective £(R, R)
(ui)

{qi}Nxd
— f@(pua qz)

a Limitations: transductive learning

» cannot handle new unseen users
0 model retraining requires additional cost
O retraining may also lead to over-fitting

Qitian Wu
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Item One-hot Representation
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User (u)

adapted from [He et al. 2017]
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Collaborative Filtering

Q Formulation of CF model for RecSys: A

Yui

* a user-item interaction matrix R = {ry; } prxn i
Element-wise Product Layer
« assume user latent factors P = {p,} v x4
» assume item latent factors Q = {q;}n x4 "0 embeding Layer
« consider an interaction model 7,; = fg(pu,qi) el s T
Input Layer
[ ta rget ObJ ectlve £ R R Z L ’ruz, TU’L User One-hot Representation item One-hot Representation
(u,?) augmented
. . . . embedding matrix
a Limitations: transductive learning new user's new user's
one-hot encoding embedding
 cannot handle new unseen users 2z [BTETaTaTT = = 3

0 model retraining requires additional cost
O retraining may also lead to over-fitting

new user's embeddings
are not trained
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Challenges for Inductive Learning

a Inductive learning can be achieved via shared mapping

weight matrix new user's new user's
feature vector user embedding feature vector embedding
a, X — ay X = | |
T T
age occ. . shared mapping .- "
Q Expressiveness would be sacrificed with inductive learning
4 ) 4 )
J1 /
u]_ % pul au1 — pu1
V. S.
o f
U9 — p’u,g a’LLQ — Pus
\ _/ -
transductive learning inductive learning
pros: sufficient expressiveness pros: flexible for new users
cons: fail for new users cons: limited capacity/expressiveness
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Related Works and Comparison

user one-hot id

user embeddings
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(a) General CF model
incremental learning

pros:

1. advanced capacity
2. fast training/inference

cons.

1. bad generalization
2. over-parametrization
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user rating vector
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(b) Item-based model

item-side learning

pros:

1. fewer parameters

2. enable inductive

cons.

1. limited capacity
2. user-item imbalance

user-item interaction graph
of 1-hop neighbors

user-item pair (u, )

____________________

user rating vector |

s5[o[3fofo]2]

item rating vector

(c) Local-graph-based inductive model
index-free learning [Zhang et al. ICLR'20]

pros:
1. enable inductive
2. not require features

cons:
1. limited expressiveness
2. fail for implicit feedback
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Our Solutions: Inductive CF Model

Q Basic idea:
* leverage one group of users to express another
* learn a latent graph over users
* message passing from existing users to new ones

Key insight: user preferences
share underlying proximity
that induces latent graphs

: : ( k )
key user's embedding matrix key user's key user one-hot id emf:iéls:g , meta latents K/V
one-hot encoding embedding 1lolo] o[ ol>TTTT |—>| 7T > 2 query user
U 1To X L - / % embedding
218 - 01000—>||II}——HIIII—>§'
user-item ratings | K/V| &
> Vy : 00001—>|||||—>|||||—>5;
> g g i f g“ ::-’ user-user relation Y query user rating vector QT
L "\ _.% | learning model
~“[3lafolof3 %" 5/o[3|0|o0]2
5|lofo[2]s <\:‘\\ query user's
2o embeddin it
S1014111010 "M user-user relation ) 50 5 ) I T [ ;ng-
Slolol2]ols _ . embeddings
o T)b learning model
: = . b 4 query user
Zoom in initial state
N L / y
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Our Solutions: Inductive CF Model (Cont.)

Q Partition users into two groups: || = M, U] = M,
» Key users: transductive learning (traditional model)
model:  Pr={pu}mxa Q={di}nxd Tui = fo(Pu,qi)

learning: PmiQIIQDSk (Rkv Ry) where Ry = {ryi}m, N
ks,
_ _ _ edge weights in a
* Query users: inductive learning (hew model) latent user-user graph
T
- T e’ [W,d, & W;p,]
model: Pw =C,/Pr |y = where d. = Qi
u U [ Zuoeuk el [quu’ o Wk:puo] iez:Iu/

learning: migl Ds, (Rq, R,) where Rg={rui}m,xn Tui = fo (ﬁu; qz)
w,

. » > - eXp(pr)u)
objective: minDg (R,, R,) + ALc (P, Pk Lo(Pr,Pyx) = — log _
| nin Ds, (Ry, Ry) + Moo (P, Pio) M, 2 B b (ol B

regularization: consistency between two estimated embeddings for one user
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Our Solutions: Inductive CF Model (Cont.)

a Learning procedures: pretraining + adaption

a Consider two scenarios in open-world recommendation:
» few-shot users (limited training data): pretraining on key + adaption on query
 zero-shot users (no training data): pretraining + self-adaption on key users

KeyUsers ..
T ( e[ = >| <oyl &
U l : >/ User Meta Latents M B g x 3 User Meta Latents | |
E ‘ = »Ds, i . x = Ds,
L3 I Relation Model E E ! us S '. Relation Model ! C g
:JJ’::J:::::J:::::J:: T §- :Eu4 .: * T g
;ul... *g <5 Dg ' 'E Y: | s ‘—}ng
: u’z . . User Latents g : :. u5 ___________________ .| Initial State User Latents < @
" Queryusers Query Users
(a) Inductive learning for interpolation (b) Inductive learning for extrapolation
—>» Data flow in pretraining - » Backward flow in pretraining X Gradient block
—>» Data flow in adaption =~ -~ » Backward flow in adaption [ |[l]| | User's rated items
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Theoretical Analysis

a The model possesses the same representation capacity compared to
matrix factorization

* The only mild condition is that key users’ latent factors span the latent space

Q The generalization ability on new users depends on number of key
users and training instances of new users
Theorem 1. Assume Eq. (3) can achieve Dsq(ﬁq, R,;) < Theorem 2. Assume 1) D is L-Lipschitz, 2) for Vr,; €

¢ and the optimal P}, given by Eq. (1) satisfies column-full- R, we have |#,;| < B, and 3) the Ll-norm of c, is
rank, then there exists at least one solution for C in Eq. (2)  bounded by H. Then with probability at least 1 — § over

such that D, (R4, R,) < e the random choice of S, € ([Mq] x [N])T4, it holds that for
any Ry, the gap between D(R,, R;) and Ds, (R, Ry) will
Pr::[gl Ds, (Rk, Ry), (1) be bounded by
in Dsq(ffqa Ry), (2) ; (2LHB \/qu In M m(1/5))  ®
min Ds, (Rq, Ry), 3) T, Ty
P,Q
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Experiment Setup

QO Dataset information:

Dataset # Users #ltems # Ratings Density # Key/Query Users # Training/Test Instances
Douban 3,000 3,000 0.13M 0.0152 2,131/869 80,000/20,000
explicit |Movielens-100K 943 1,682 0.10M 0.0630 123,202/13,689
Movielens-1M 6,040 3,706 1.0OM 0.0447 5,114/926 900,199/100,021
. . .. | Amazon-Books | 52,643 91,599 2.1M 0.0012 49,058/3,585 2,405,036/526,430
implicit | 4 on-Beauty| 2944 57280  0.08M  0.0004 780/2,164 53,464/29,440

a Evaluation Protocol:
 Explicit dataset: random split, RMSE & NDCG metric
 Implicit dataset: leave-last-out, AUC & NDCG metric, negative sampling

Q Comparison: CF models, inductive models, feature-based models
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Experiment Setup

a Implementation:
* IDCF-NN: feedforward neural network as predictor

(Py ai + nn([pullasllpu © ai]))

9 +bu+bi

fo(Pu,qi) =

 IDCF-GC: graph convolution network as predictor

my, ., =ReLlJ( Z W, nqi)
Nu,m] 1€ENu,m

1
Z WP,THPH)
‘M?ml ‘I..I!.EN:',.WL

f(Pu, Qis {Putuen;, {Qitien,) =nn'([Pu © qil|pu © my|jn; © q;ljn; © m,]) + by, + b;

n; m :RELU(
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Experiment Results

a Comparison results for explicit feedback:

* For few-shot query users, very competitive results as inductive models and
very close test performance to transductive models

* For zero-shot new users, significantly outperform SOTA inductive models

Douban ML-100K ML-1M Douban ML-100K ML-1IM

Method  Inductive Feature  RMSE ~ NDCG ~ RMSE ~ NDCG ~ RMSE  NDCG Method  ooeE"NDCG RMSE NDCG RMSE NDCG™

Al FS Al FS Al FS All FS All FS All FS

NIMC 0.766 0921 1.089 0.864 1.059 0.883

PMF No No 0.737 0.718 0.939 0.954 0.932 1.003 0.858 0.843 0.851 0.946 0.919 0.940 BOMIC 0.764 0920 1.088 0859 1.057 0879
NNMF No No 0.729 0.705 0.939 0.952 0.925 0.987 0.895 0.878 0.848 0.940 0.920 0.937
GCMC No No 0.731 0.706 0.938 0.956 0.911 0.989 0.900 0.886 0.837 0.947 0.923 0.939 Mi{ts\l;iE ;3;2 gggg ;gz; 8;2(8) ggg? 8;;;
NIMC Yes Yes 0.732 0.745 0.928 0.931 1.015 1.065 0.832 0.824 0.873 0.995 0.889 0.904 IGMC (0.743 - 1.051 - 0.997 -
BOMIC Yes Yes 0.735 0.747 0.923 0.925 0.931 1.001 0.828 0.815 0.847 0.953 0.905 0.924
F-EAE Yes No 0.738 - - 0920 - - - 0860 - - -
IGMC Yes No 0.721 0.728 0.905 0.997 0.857 0.956

IDCF-NN (ours)  Yes No 0.738 0.712 0.939 0.956 0.931 0.996 0.896 0.880 0.844 0.952 0.922 0.940

IDCF-GC (ours)  Yes No 0.733 0.712 0.940 0.956 0.905 0.981 0.901 0.884 0.839 0.944 0.924 0.940

Lower RMSE and higher NDCG are better
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Experiment Results

a Comparison results for implicit feedback:
* For few-shot query users, achieve SOTA results
* For zero-shot new users, significantly improvement

Amazon-Books Amazon-Beauty

Melot. —ame NDCG AUC NDCG

Query New Query New Query New Query New

PMF 0917 -  0.888 - 0779 - 0769 -

NNMF 0919 - 0.891 - 079 - 0763 -

NGCF 0916 - 0.896 - 0793 - 0775 -

PinSAGE 0923 - 0.901 - 07% - 0775 -
FISM - 0752 - 07992 - 0613 - 0.678
MultVAE - 0738 - 0701 - 0644 - 0.679

- A4 U0 U

IDCF-GC 0.938 0.946 0921 0930 0.801 0.791 0.772 0.791

Higher AUC and higher NDCG are better
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Experiment Results

Q Further discussions:

 Our model can exceed transductive models w,r.t, RMSE when users’

training/historical ratings are sparse

* There exist informative key users that contribute to most of capacity. Key users

with more historical ratings tend to be more important
* The training time scales linearly w.r.t. dataset size

UUUUUUU

—e— IDCF-NN ! X —e— IDCF-NN
15/ —s— IDCF-GC j LU ==X —=— IDCF-GC 0.00045
- NNMF ; 20 »~ NNMF w2 a0
1.4 0.08 U
GCMC j \ GeMc © 0.00040 =2 .
et g a o® L]
w13 b5 4001 = 0.751 o’ ..: , P
g o 0.00035 5 M‘o‘o Qe
- ) > £ o -#J‘ :.. L4 P
600 4 @ 0.70 1 .. [ ]
% = o g ®
11 (@] << .'
L]
] - 0.00025 0.65
1.0 - 80O
c ~ 0.00020 0 200 400 600 800 1000 1200 1400
1 0:5 0.2 0:1 0.05 0_{)1 0.001 5 10 . '15 . 20 25 o 1000 2000 3UFJD 4000 5000 # H :
Sparsity # Training ratings Key user index istory ratings
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Towards Open-World Feature Extrapolation:
An Inductive Graph Learning Approach

Advances in Neural Information Processing Systems (NeurlPS'21)
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Background for Attribute Feature Learning

Q General problem: learn a mapping from input features to labels

* Input data x = |x1, 29, -+ , 4| Where x; denotes the i-th input feature
« Assume a prediction model f : x — ¥ and objective

f* = arg m}nE(x,y)ND[l(f(X)v y)]

Q Applications

 Tabular data: weather/income/usage prediction, disease diagnosis...
* Real systems: recommendation, advertisement, question answering...

Scena r'|0 1 : age occ edu income Scena rio 2: amazon.com Recommended for You

Predict a o1 |11 %12 %13 U1 Predict whether wwasuwmmmmmmm s age/gender
person’s 02 | T21 22 93 Y2 a user would BIG

income with | o3 [z31 232 233 2 click an item e WA SR category/price...
aga/occ/edu [~ with attributes e, SmmE Meshe e
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Challenges and Limitations of Neural Networks

Q Challenges for attribute feature learning

* New features dynamically appear (unseen features in test set)
« Scenarios: heterogeneous data sources, multi-modal data

a How can neural networks deal with new features

* Retraining from scratch
O Issue: time-consuming

* Incremental learning on new features
O Issue: over-fitting & catastrophic forgetting

a Inductive reasoning ability
* Humans possess inherent ability for
understanding new infromation

Qitian Wu

features label
Z
§ training data %
[ -
£ /// i
=
test data
Training N OInference
0]
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0—~0 00 O g /00
0 O O O E ()'// new feature's embs
1 O 1_ O are not learned
memory concept embs observation
age occ income l i oo
/age -
o1 %11 %12 Y1 5 , g;41 o
02| %21 %22 Y2 occ [ Y o
| v z43| edu
031231 232 Y3 3] edu ||_+?|iincome:?
et e | classifier

.....................................................................................................................

---------------------------------------------------------------------------------------------------------------------
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Problem Formulation

Q Preprocessing: convert raw inputs to multi-hot vectors
e Raw input r; = [rj1, 72, -+ ,Tiq] where Tim denotes the m-th raw feature
* For categorical feature: one-hot encoding representation
* For continuous feature: first discretization then one-hot encoding
X; = [X;, X7, ,Xf] where x;" is a one-hot vector
0 Open-world feature extrapolation:

Training Set domain Test Set
Data {(XZ7 yi)}’iEItr generalization Data {(Xi’7 yi’)}’i’EIte /
Feature space x; € &,, = {0,1}” —»| Feature space x; € X, = {0,1}"
Label space yi € V [Xtr - Xte] Label space vir €V

0 Two cases causing feature space expansion:
1) new raw features come, 2) unseen feature values out of known range
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Key Observation 1: Permutation-Invariance

a Neural networks can be decomposed into two parts

A~ . . O O
Y — h(X@', va ) ﬁxfl . xf: 8 8 ,
[ololiTol1] x B i

{ WXZ 0jO|1]0]|1 O 8
y’L T FFN ZZ’ ¢) feature vectorx; embedding matrix W Z; classification layer

a Equivalent view: feature embedding look-up + embedding aggregation
)

A o] | )
- (EErT T Key insight | h
0 -:Ijj @_} The permUtatlon- unseen value in E
1 —}-—) ) : existing raw 1 > _P@__)
o |EEI | Invariance property feature |y (A |
1 J enables variable- 1 | BEErT /
embedding lookup  aggregation \length |nput features ) lil| \;-:Dﬁ
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Key Observation 2: Feature-Data Graph

a The input feature-data matrix can be treated as a bipartite graph

" Feature nodes Fy = {f;}71,

Instance nodes I, = {0;}i-,

Input data matrix
Xy = [Xilier,, € {0,137 ) -

_ Adjacency matrix X;,

Advantage of graph representation:

1) Variable-size for features/instances Observed Data Matrix Feature-Data Graph
2) Missing values are allowed fife fs fu fs 01> fi
‘Key insight: ) o0 1.0 170 j‘> 02 f2
Convert inferring embeddings for o1 1100 P f3
new features to inductive 03 g (1) (1) (1) 1 . fa
representation on graphs 04 4 fs

)
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Proposed Model Framework: FATE

Observed Data Matrix

0 1 0]
1.0 0

o110 1
02

03

1 1
0 1
0410 O

data/feature nodes '\‘

] BT ] node embeddings

—_— message passing
------ > data flow
= = = )» replace & update

P s fi Fs

1 0 1_'__::\‘_

Feature-Data Graph GNN Model
7 -_—_< i - f3 3 f3 ¥ f3 B
W] 02 f2 O 02 0
‘ f3 O || fa ’ fa ) fa E
] O3 03 3
) f4 BT f5 , f5 - f5 BT
] <04 f5| B 04 04
4 .y / ' i
r e e mmmmmmmem—==m==m======-= 7
0 (mmrrm @, O O
1 | EEECT OO0
0B [ ->F) >0 o O o O O
1 — I ] OO0
1 —p BT O O 0O
+——— Embedding Layer 4 Classifier Network |

Backbone Network

a High-level GNN: take feature-data matrix as input and update feat. embeddings
O Low-level backbone: take each instance as input and output prediction

Qitian Wu

Open-world Extrapolation via Graph Learning
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Details for Proposed Model

0 GNN model feedforward R — N Al
initia f updated
» Feature nodes {w;}”, embecidings gy . . embeddings
(initial embeddings as w”) {%F‘?‘:‘ | e 1) E}
. N P-ShT/ 59> Gond> J; < YLD
Instance nodes {s;};_; K =4,
(initial states s = 0) R SRR
« Message passing rule: ' | _ assign
observed dla'ra matrix backbone network
(l) (l _ 1) new feature
a,” = Acc({w, |Vk,ziy =1}) fi f2 Fs fa)| .7 8 8
1 BT N
s = POComs (s V,alM) |20 10 - LOI0
7 1 (/ 02 1 1 1 0 = —) O O
b = Aca({s{ ™ |Wk,ap =1))  |®0 L 0! § OO
040 0 1 0 embedding layer classification layer

w = PO o (wl'~), h0-1)
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Details for Proposed Model

a Entire feedforward compute

* Query feature embeddings
O For old features: W
O For new features: set as zero

» Updata feature embeddings

W = (w72, = 9(W, X;0)
 Assign to backbone and output

predicted results

Note: 1) X can be either training or
test data; 2) the permutation-
Invarance and graph representation
enables arbitrarily sized X

1
observed data matrix ., feature

initial
embeddings -

=

A

BT

1f1

BT

-y f2

GNN message passing

[Aag}>combl>@1)

J
_____________________
P

01
02
03
04

h o fsifal

0

1
0
0

1

1
1
0

0

1
0
1

1

0
1
0

: 4

L I=lol=|lo

BT

=

embedding layer
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Proposed Training Approach

a Two useful techniques for learning to extrapolate

* Proxy training data
0 Self-supervised learning:

n-fold splitting input features

O inductive learning:

k-shot sampling input features

* Asynchronous Updates
O Fast/slow for backbone/GNN

Q DropEdge regularization
a Scaling to large systems

* Mini-batches along the instance
dimension (complexity O(Bd))

&
L

- EOERE klo.‘. \:Io‘;‘b M
fife f3 fa n-fold split LT [T EHE T LT
IRARRE D”"PEdge F%F%F%F%
0110 1 01 N
o2l1 110 .... GNN Backbone §2> >
o310 101 ... model network ] 3%
0410 0 10 ‘|f1|f2|f3|f4|
slow update

(@) Self-supervised learning with n-fold splitting

\ 4 \ 4 k.

f1 f2 f3 fall| k-shot sample

01
02
03
04

EEEE-

. HBHR"
¥
~

FlEER"

’E
B DropEdge BH
5181 |f |f3|f4| i a:
6NN
model
|

manfon

Bl EREIE
L LWLl Ll
0] Doh] [
L
B

%_h
t"H

ackbone
network

I 4 A
010
0 01

R =)
“—h

slow update

(b) inductive learning with k-shot sampling
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Generalization Error Analysis

a Key aspect: we treat input data matrix as a whole and the proposed
proxy data-based training approach samples data point from

S ={(X1,"1), (X2,Y2), -, (X, Yar)} Where M oc O ((d d]L)vky)

Q The empirical risk over training data
Remb(hs) = Z L(Ym, h(Xm;s))

a The generalization error can be deflned as
R(hs) = Ex v)[L(Y, M(X;¢s))]

Q We care about expected generalization gap over random sampling
Ea[R(hs) = Remp(hs)]
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Generalization Error Analysis (Cont.)

a Theorem. Assume the loss function is bounded by /(y;, 9:) < A. For
a learning algorithm trained on data {X;,, Y; } with T iterations of
SGD updates, with probability at least1 — § , we have

Ea[R(hs) — Remp(hs)] < o(f) n (@( d' N A)\/log(l/@)

M M?2 oM
d!
(d — k)

where M o« O ( ) and k denotes the size of sampled features

Note: 1) The generalization gap depends on the number of raw features, i.e. d
2) The size M is determined by the configuration of proxy training data.
(If there is more randomness, then M would be larger)

[ Is larger M always better? No! larger variance and larger optimization error ]
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Experiments on UCI Datasets

_ = — features label
Dataset = Domain #Instances  #Raw Feat.  Cardinality = #0-1 Feat. #Class

- 7%
Gene Life 3190 60 4~6 287 3
Protein Life 1080 80 2~8 743 8 § training data /
Robot  Computer 5456 24 9 2317 4 S %
Drive ~ Computer 58509 49 9 378 11 |2 4 4
Calls Life 7195 10 4~10 219 10 N test data
Github Social 37700 - ~ 4006 2 .

a Evaluation: training on observed features and testing on all features
* Instance-level: random split all the instances into training/validation/test data
 Feature-level: random split all the features into observed/unobserved features
0 Baselines/Competitors:

» Base (use observed features for tr/te), Oracle (use all features for tr)
* Simple extrapolation approaches: Avg, KNN, Mean pooling
* Incremental learning (first train on observed feat, then retrain on unobserved)

a Implementation: 3-layer NN as backbone, 4-layer GNN
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Experiments on UCI Datasets
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Resutls: 1) FATE (ours) yields 7.3% higher acc. and 1.3% higher AUC than Base
2) FATE achieves very close performance to Oracle (using all features)
FATE produces 29.8% higher acc. than baselines Avg, KNN, Pooling
3) FATE even outperforms INL in most cases with averagely 4.17% impv.
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Figure.
Accuracy/ROC-
AUC results w.r.t
different ratios for
observed features
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Experiments on UCI Datasets

Gene Protein Robot Drive Calls
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Figure. T-SNE visualization of feature embeddings produced by FATE (ours) and Oracle. Red for
observed features and yellow for unobserved ones.

Key insights: 1) FATE's produced embeddings for observed/unobserved features
have dissimilar distributions compared to Oracle
I:> FATE manages to extract some informative knowledge from new features

2) The embeddings of FATE form some particular structures
|:> FATE could further capture feature-level relations through GNN interaction
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Experiments on Advertisement Click Prediction

Q Scenario: click-through rate (CTR) prediction for online advertisement
* Goal: predict whether a user would click on a displayed ad. (binary classification)

* Input: attribute features for users/ads
O Typical features: device id, site id, app id, ad category, app category, etc.
0 The ID features have massive values which induces large feature dimensions

Dataset ~ Domain #Instances #Raw Feat.  Cardinality  #0-1 Feat. #Class

Avazu Ad. 40,428,967 22 5~1611749  2.018,025 2
Criteo Ad. 45,840,617 39 5~541311 2,647,481 2

a Evaluation: chronologically split all the instances into 10-fold
» Use first subset for training, second for validation and the remaining for test
+ ~1.3M/~0.4M/~0.8M exclusive features in training/validation/test data in Criteo

3 Implementation: 3-layer NN/DeepFM as backbones
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Experiments on Advertisement Click Prediction

Table. ROC-AUC results for eight test sets (T1 - 18) on Avazu and Criteo

Dataset | Backbone | Model | TI T2 T3 T4 T5 T6 T7 T8 Overall
Base 0.666 0.680 0.691 0.694 0.699 0.703 0.705 0.705 0.693 4+ 0.012
NN Pooling | 0.655 0.671 0.683 0.683 0.689 0.694 0.697 0.697 0.684 £ 0.011
Avazu FATE | 0.689 0.699 0.708 0.710 0.715 0.720 0.721 0.721 0.710 &+ 0.010
Base 0.675 0.684 0.694 0.697 0.699 0.706 0.708 0.706 0.697 £ 0.009
DeepFM Pooling | 0.666 0.676 0.685 0.685 0.688 0.693 0.694 0.694 0.685 &+ 0.009
FATE 0.692 0.702 0.711 0.714 0.718 0.722 0.724 0.724 0.713 +£0.010
Base 0.761 0.761 0.763 0.763 0.765 0.766 0.766 0.766 0.764 £+ 0.002
NN Pooling | 0.761 0.762 0.764 0.763 0.766 0.767 0.768 0.768 0.765 £ 0.001
Criteo FATE 0.770 0.769 0.771 0.772 0.773 0.774 0.774 0.774 0.772 £+ 0.001
Base 0.772 0771 0772 0.772 0.774 0774 0.774 0.774 0.773 £ 0.001
DeepFM Pooling | 0.772 0.772 0.773 0.774 0.776 0.776 0.776 0.776 0.774 £ 0.002
FATE 0.781 0.780 0.782 0.782 0.784 0.784 0.784 0.784 0.783 + 0.001

Resutls: FATE achieves significantly improvements over Base/Pooling with different

ackbones (NN and DeepFMIl)

FATE can extrapolate for unseen features in dynamic data

Qitian Wu Open-world Extrapolation via Graph Learning

[11 H. Guo, R. Tang, Y. Ye, Z. Li, and X. He.
Deepfm: A factorization-machine based
neural network for CTR prediction. In
International Joint Conference on
Artificial Intelligence, 2017.
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Scalability Test for Large Datasets

Time (s)

Time cost Space cost Time cost Space cost
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Figure 1. Scalability w.r.t. batch sizes Figure 2. Scalability w.r.t. feature numbers

Resutls: FATE yields linear time/space scalability w.r.t. data and feature sizes
m=) Promising for larger datasets and real systems

[The feature-data graph representation and GNN learning induces complexity O(Bd)]
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Comparison with Other Learning Problems

a Domain Adaption: [source domain]——»[ target domain ]

- Our differences: 1) same label distribution , 2) one task with different input feature space

A Continual Learning: [data 1}—»[ data 2}—»[data stata 4]

- Our differences: 1) one-piece data, 2) no further re-training, 3) one task for learning

a Open-Set Learning: [training label space}—»[new label class}

- Our differences: 1) same label space, 2) different input feature space

Q Zero-Shot Learning: [observed entities}—-»[ unseen entities]

- Our differences: 1) no extra side information, 2) different feature space
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Conclusions

Q The main ideas of open-world recommendation [ICML21]:

1) partition entities into two groups e1
€2

Graph Structure
Learning Module

2) learn a latent graph among entities
and compute new entities' embeddings €3
using those of existing ones

enew

a Potential applications:
* For entity representation extrapolation, e.g. in knowledge graphs
 Transferring embeddings from well-trained concepts to long-tail ones

a Future works:
* More expressive architecture, e.g. flow model
* Further theoretical understanding for capacity and generalization
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Conclusions

Q The main ideas of open-world feature extrapolation [NeurlPS'21]:

Observed Data Matrix Feature-Data Graph

1) instance-feature matrix as a graph

fi f2 f3 éf4 Ts |irain data
2) convert feature embedding learning |ofo 1 01 Graph Representation
. . ool 1 1 110 0 » Learning Module
to graph representation learning oo 10011
(extrapolation via message passing) 04 iﬁt‘b;‘:?_gfq T [restaats ‘
P . l l . ‘;beNedEf ”?W | feature embeddings
Q Potential applications: selues PRI

* New attribute features for question answering and reasoning (NLP)
 Information from new sensors for robot learning and decisions (Robot)

* Novel drugs or combination for healthcare treatment (Life Science/Healthcare)
« Extra annotation features for image learning and understanding (Vision)
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