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 Machine learning models perform 
well in CLOSED-world situations

Background and Motivation
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  Real-world situations are OPEN, 
dynamic and also uncertain



More Specific Examples
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 New users/items in 
recommender systems

 New features collected 
by new released 
platforms for decisions

 New developed drugs 
or combinations for 
treatment



 Open-world learning requires out-of-distribution generalization

Technical Challenges
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 Retraining model from scratch for each new data is time-consuming

Technical Challenges
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 Incremental learning or finetuning may lead to over-fitting new data

Technical Challenges
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 Incremental learning cannot deal with expanded feature space

Technical Challenges
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 Model-based Collaborative Filtering      Matric Factorization Model
 Basic idea:

Background for Recommendation
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user-item rating matrix
factorize user embeddings

item embeddings
reconstruction matrix

training

serving

 CF models cannot handle new unseen users in open-world recommendation
user clicking history

prediction

new user

?
?
?

existing users

reconstruction

user clicking history



Collaborative Filtering
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 Formulation of CF model for RecSys: 
• a user-item interaction matrix 
• assume user latent factors
• assume item latent factors
• consider an interaction model
• target objective

 Limitations: transductive learning
• cannot handle new unseen users

 model retraining requires additional cost
 retraining may also lead to over-fitting

adapted from [He et al. 2017]



Collaborative Filtering
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 Formulation of CF model for RecSys: 
• a user-item interaction matrix 
• assume user latent factors
• assume item latent factors
• consider an interaction model
• target objective

 Limitations: transductive learning
• cannot handle new unseen users

 model retraining requires additional cost
 retraining may also lead to over-fitting new user's embeddings 

are not trained



Challenges for Inductive Learning

 Inductive learning can be achieved via shared mapping

 Expressiveness would be sacrificed with inductive learning
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transductive learning inductive learning
pros: sufficient expressiveness
cons: fail for new users

v. s.

shared mapping

pros: flexible for new users
cons: limited capacity/expressiveness

age occ.



Related Works and Comparison
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pros:
1. advanced capacity
2. fast training/inference

cons:
1. bad generalization
2. over-parametrization

pros:
1. fewer parameters
2. enable inductive

cons:
1. limited capacity
2. user-item imbalance

pros:
1. enable inductive
2. not require features

cons:
1. limited expressiveness
2. fail for implicit feedback

incremental learning index-free learning [Zhang et al. ICLR'20]item-side learning



Our Solutions: Inductive CF Model
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 Basic idea:
• leverage one group of users to express another
• learn a latent graph over users
• message passing from existing users to new ones

Key insight: user preferences 
share underlying proximity 
that induces latent graphs

zoom in



Our Solutions: Inductive CF Model (Cont.)
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 Partition users into two groups:
• Key users: transductive learning (traditional model)

• Query users: inductive learning (new model)

model: 

learning:

model: 

learning:

where

where

where

objective:

regularization: consistency between two estimated embeddings for one user

edge weights in a 
latent user-user graph



Our Solutions: Inductive CF Model (Cont.)
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 Learning procedures: pretraining + adaption 
 Consider two scenarios in open-world recommendation:

• few-shot users (limited training data): pretraining on key + adaption on query
• zero-shot users (no training data): pretraining + self-adaption on key users



Theoretical Analysis
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 The model possesses the same representation capacity compared to 
matrix factorization

• The only mild condition is that key users' latent factors span the latent space
 The generalization ability on new users depends on number of key 

users and training instances of new users



Experiment Setup

 Dataset information:

 Evaluation Protocol:
• Explicit dataset: random split, RMSE & NDCG metric
• Implicit dataset: leave-last-out, AUC & NDCG metric, negative sampling

 Comparison: CF models, inductive models, feature-based models
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explicit

implicit



Experiment Setup

 Implementation:
• IDCF-NN: feedforward neural network as predictor

• IDCF-GC: graph convolution network as predictor
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Experiment Results

 Comparison results for explicit feedback:
• For few-shot query users, very competitive results as inductive models and 

very close test performance to transductive models
• For zero-shot new users, significantly outperform SOTA inductive models
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Lower RMSE and higher NDCG are better



Experiment Results

 Comparison results for implicit feedback:
• For few-shot query users, achieve SOTA results
• For zero-shot new users, significantly improvement
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Higher AUC and higher NDCG are better



Experiment Results

 Further discussions:
• Our model can exceed transductive models w,r,t, RMSE when users' 

training/historical ratings are sparse
• There exist informative key users that contribute to most of capacity. Key users 

with more historical ratings tend to be more important
• The training time scales linearly w.r.t. dataset size
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An Inductive Graph Learning Approach

Qitian Wu, Chenxiao Yang, Junchi Yan
Department of Computer Science and Engineering

Shanghai Jiao Tong University

Advances in Neural Information Processing Systems (NeurIPS'21)



 General problem: learn a mapping from input features to labels
• Input data                                          where       denotes the i-th input feature
• Assume a prediction model                     and objective                    

 Applications
• Tabular data: weather/income/usage prediction, disease diagnosis…
• Real systems: recommendation, advertisement, question answering…

Background for Attribute Feature Learning
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Scenario 1:
Predict a 
person's 
income with 
aga/occ/edu

Scenario 2:
Predict whether 
a user would 
click an item 
with attributes

user features:
age/gender...
item features:
category/price...



 Challenges for attribute feature learning
• New features dynamically appear (unseen features in test set)
• Scenarios: heterogeneous data sources, multi-modal data

 How can neural networks deal with new features
• Retraining from scratch

 Issue: time-consuming
• Incremental learning on new features

 Issue: over-fitting & catastrophic forgetting

 Inductive reasoning ability
• Humans possess inherent ability for 
   understanding new infromation

Challenges and Limitations of Neural Networks
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 Preprocessing: convert raw inputs to multi-hot vectors
• Raw input                                         where        denotes the m-th raw feature
• For categorical feature: one-hot encoding representation
• For continuous feature: first discretization then one-hot encoding                   

Problem Formulation
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where        is a one-hot vector
 Open-world feature extrapolation:                  

Data
Training Set Test Set

Feature space
Label space

Data
Feature space
Label space

 Two cases causing feature space expansion:             
1) new raw features come,   2) unseen feature values out of known range 

domain
generalization



 Neural networks can be decomposed into two parts

Key Observation 1: Permutation-Invariance 
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 Equivalent view: feature embedding look-up + embedding aggregation
Key insight:
The permutation-
invariance property 
enables variable-
length input features



 The input feature-data matrix can be treated as a bipartite graph

Key Observation 2: Feature-Data Graph 
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Input data matrix Feature nodes
Instance nodes
Adjacency matrix

Key insight:
Convert inferring embeddings for 
new features to inductive 
representation on graphs

Advantage of graph representation:
1) Variable-size for features/instances
2) Missing values are allowed



 High-level GNN: take feature-data matrix as input and update feat. embeddings  
 Low-level backbone: take each instance as input and output prediction

Proposed Model Framework: FATE 
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 GNN model feedforward
• Feature nodes
   (initial embeddings as         )
• Instance nodes

         (initial states               )
• Message passing rule:
   

Details for Proposed Model
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 Entire feedforward compute
• Query feature embeddings

 For old features: 
 For new features: set as zero

• Updata feature embeddings

• Assign to backbone and output 
predicted results

Details for Proposed Model
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Note: 1)       can be either training or 
test data; 2) the permutation-
invarance and graph representation 
enables arbitrarily sized 



 Two useful techniques for learning to extrapolate
• Proxy training data

 Self-supervised learning:
    n-fold splitting input features
 inductive learning:
    k-shot sampling input features

• Asynchronous Updates
 Fast/slow for backbone/GNN

 DropEdge regularization
 Scaling to large systems

• Mini-batches along the instance 
   dimension (complexity             )

Proposed Training Approach

Qitian Wu 32Open-world Extrapolation via Graph Learning

(a) Self-supervised  learning with n-fold splitting

(b) inductive learning with k-shot sampling



 Key aspect: we treat input data matrix as a whole and the proposed 
proxy data-based training approach samples data point from

Generalization Error Analysis
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where

 The empirical risk over training data

 The generalization error can be defined as

 We care about expected generalization gap over random sampling



 Theorem. Assume the loss function is bounded by                    . For 
a learning algorithm trained on data                 with     iterations of 
SGD updates, with probability at least           , we have

Generalization Error Analysis (Cont.)
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Note: 1) The generalization gap depends on the number of raw features, i.e. d
          2) The size M is determined by the configuration of proxy training data. 
               (If there is more randomness, then M would be larger)

where                                  and k denotes the size of sampled features

Is larger M always better? No! larger variance and larger optimization error



 Evaluation: training on observed features and testing on all features
• Instance-level: random split all the instances into training/validation/test data
• Feature-level: random split all the features into observed/unobserved features

 Baselines/Competitors: 
• Base (use observed features for tr/te), Oracle (use all features for tr)
• Simple extrapolation approaches: Avg, KNN, Mean pooling
• Incremental learning (first train on observed feat, then retrain on unobserved)

 Implementation: 3-layer NN as backbone, 4-layer GNN

Experiments on UCI Datasets
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Experiments on UCI Datasets
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Resutls: 1) FATE (ours) yields 7.3% higher acc. and 1.3% higher AUC  than Base
               2) FATE achieves very close performance to Oracle (using all features)
               2) FATE produces 29.8% higher acc. than baselines Avg, KNN, Pooling
               3) FATE even outperforms INL in most cases with averagely 4.1% impv.

Figure. 
Accuracy/ROC-
AUC results w.r.t. 
different ratios for 
observed features



Experiments on UCI Datasets
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Figure. T-SNE visualization of feature embeddings produced by FATE (ours) and Oracle. Red for 
observed features and yellow for unobserved ones.

Key insights: 1) FATE's produced embeddings for observed/unobserved features    
                       have dissimilar distributions compared to Oracle
                       
                       2) The embeddings of FATE form some particular structures

FATE manages to extract some informative knowledge from new features 

FATE could further capture feature-level relations through GNN interaction



Experiments on Advertisement Click Prediction 
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 Evaluation: chronologically split all the instances into 10-fold
• Use first subset for training, second for validation and the remaining for test
• ~1.3M/~0.4M/~0.8M exclusive features in training/validation/test data in Criteo 

 Implementation: 3-layer NN/DeepFM as backbones

 Scenario: click-through rate (CTR) prediction for online advertisement
• Goal: predict whether a user would click on a displayed ad. (binary classification)
• Input: attribute features for users/ads

 Typical features: device id, site id, app id, ad category, app category, etc.
 The ID features have massive values which induces large feature dimensions



Experiments on Advertisement Click Prediction 
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Table. ROC-AUC results for eight test sets (T1 - T8) on Avazu and Criteo

[1] H. Guo, R. Tang, Y. Ye, Z. Li, and X. He. 
Deepfm: A factorization-machine based 
neural network for CTR prediction. In 
International Joint Conference on 
Artificial Intelligence, 2017.

Resutls: FATE achieves significantly improvements over Base/Pooling with different 
               backbones (NN and DeepFM[1] )

FATE can extrapolate for unseen features in dynamic data



Scalability Test for Large Datasets 
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Resutls: FATE yields linear time/space scalability w.r.t. data and feature sizes 
Promising for larger datasets and real systems

Figure 1. Scalability w.r.t. batch sizes

Time cost Space cost Time cost Space cost

Figure 2. Scalability w.r.t. feature numbers

The feature-data graph representation and GNN learning induces complexity 



Comparison with Other Learning Problems 
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 Domain Adaption:   

 Continual Learning:   

 Open-Set Learning:   

 Zero-Shot Learning:   

source domain target domain

data 1 data 2 data 3 data 4

training label space new label class

observed entities unseen entities

• Our differences: 1) same label distribution , 2) one task with different input feature space  

• Our differences: 1)  one-piece data, 2) no further re-training, 3) one task for learning 

• Our differences: 1) same label space, 2) different input feature space 

• Our differences: 1) no extra side information, 2) different feature space 

…



Conclusions

 The main ideas of open-world recommendation [ICML'21]:

 Potential applications:
• For entity representation extrapolation, e.g. in knowledge graphs
• Transferring embeddings from well-trained concepts to long-tail ones

 Future works:
• More expressive architecture, e.g. flow model
• Further theoretical understanding for capacity and generalization
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1) partition entities into two groups

2) learn a latent graph among entities 
and compute new entities' embeddings 
using those of existing ones



Conclusions

 The main ideas of open-world feature extrapolation [NeurIPS'21]: 

 Potential applications:
• New attribute features for question answering and reasoning (NLP)
• Information from new sensors for robot learning and decisions (Robot)
• Novel drugs or combination for healthcare treatment (Life Science/Healthcare)
• Extra annotation features for image learning and understanding (Vision)
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1) instance-feature matrix as a graph

2) convert feature embedding learning 
to graph representation learning 
(extrapolation via message passing)
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