From Graph Learning to Open-World Representation Learning

Qitian Wu

Department of Computer Science and Engineering Shanghai Jiao Tong University

Background and Motivation

Machine learning models perform well in CLOSED-world situations

 Real-world situations are OPEN, dynamic and also uncertain

More Specific Examples

New users/items in recommender systems

New features collected by new released platforms for decisions

New developed drugs or combinations for treatment

Open-world learning requires out-of-distribution generalization

Qitian Wu

□ Retraining model from scratch for each new data is time-consuming

□ Incremental learning or finetuning may lead to over-fitting new data

□ Incremental learning cannot deal with expanded feature space

Towards Open-World Recommendation: An Inductive Model-based Collaborative Filtering Approach

International Conference on Machine Learning (ICML'21)

Qitian Wu, Hengrui Zhang, Xiaofeng Gao, Junchi Yan, Hongyuan Zha Shanghai Jiao Tong University The Chinese University of Hong Kong, Shenzhen

Background for Recommendation

Open-world Extrapolation via Graph Learning

Collaborative Filtering

□ Formulation of CF model for RecSys:

- a user-item interaction matrix $R = \{r_{ui}\}_{M \times N}$
- assume user latent factors $\mathbf{P} = {\{\mathbf{p}_u\}_{M imes d}}$
- assume item latent factors $\mathbf{Q} = \{\mathbf{q}_i\}_{N imes d}$
- consider an interaction model $\hat{r}_{ui} = f_{ heta}(\mathbf{p}_u, \mathbf{q}_i)$
- target objective $\mathcal{L}(\hat{R}, R) = \sum_{(u,i)} L(\hat{r}_{ui}, r_{ui})$

Limitations: transductive learning

cannot handle new unseen users

model retraining requires additional cost
 retraining may also lead to over-fitting

adapted from [He et al. 2017]

Collaborative Filtering

□ Formulation of CF model for RecSys:

- a user-item interaction matrix $R = \{r_{ui}\}_{M \times N}$
- assume user latent factors $\mathbf{P} = \{\mathbf{p}_u\}_{M imes d}$
- assume item latent factors $\mathbf{Q} = \{\mathbf{q}_i\}_{N imes d}$
- consider an interaction model $\hat{r}_{ui} = f_{ heta}(\mathbf{p}_u,\mathbf{q}_i)$
- target objective $\mathcal{L}(\hat{R}, R) = \sum_{(u,i)} L(\hat{r}_{ui}, r_{ui})$

Limitations: transductive learning

cannot handle new unseen users

model retraining requires additional cost
 retraining may also lead to over-fitting

Challenges for Inductive Learning

Inductive learning can be achieved via shared mapping

V. S.

Expressiveness would be sacrificed with inductive learning

$$\begin{array}{cccc}
 & f_1 \\
 & u_1 \xrightarrow{f_2} \mathbf{p}_{u_1} \\
 & u_2 \xrightarrow{f_2} \mathbf{p}_{u_2}
\end{array}$$

transductive learning

pros: sufficient expressiveness cons: fail for new users

 $\begin{array}{c} & f \\ \mathbf{a}_{u_1} \to \mathbf{p}_{u_1} \\ & f \\ \mathbf{a}_{u_2} \to \mathbf{p}_{u_2} \end{array} \end{array}$

inductive learning pros: flexible for new users cons: limited capacity/expressiveness

Qitian Wu

Related Works and Comparison

(a) General CF model incremental learning

pros:

advanced capacity
 fast training/inference

cons:

1. bad generalization

2. over-parametrization

(c) Local-graph-based inductive model

index-free learning [Zhang et al. ICLR'20]

pros:

- 1. enable inductive
- 2. not require features

cons:

- **1. limited expressiveness**
- **2. fail for implicit feedback**

Our Solutions: Inductive CF Model

□ Basic idea:

- leverage one group of users to express another
- learn a latent graph over users
- message passing from existing users to new ones

Key insight: user preferences

share underlying proximity

that induces latent graphs

Our Solutions: Inductive CF Model (Cont.)

□ Partition users into two groups: $|\mathcal{U}_k| = M_k$ $|\mathcal{U}_q| = M_q$

• Key users: transductive learning (traditional model)

model: $\mathbf{P}_{k} = \{\mathbf{p}_{u}\}_{M_{k} \times d}$ $\mathbf{Q} = \{\mathbf{q}_{i}\}_{N \times d}$ $\hat{r}_{ui} = f_{\theta}(\mathbf{p}_{u}, \mathbf{q}_{i})$ learning: $\min_{\mathbf{P}_{k}, \mathbf{Q}, \theta} \mathcal{D}_{\mathcal{S}_{k}}(\hat{R}_{k}, R_{k})$ where $R_{k} = \{r_{ui}\}_{M_{k} \times N}$

• Query users: inductive learning (new model)

$$\begin{array}{ll} \text{model:} \quad \tilde{\mathbf{p}}_{\mathbf{u}'} = \mathbf{c}_{u'}^{\top} \mathbf{P}_k & \left[c_{u'u} = \frac{\mathbf{e}^{\top} [\mathbf{W}_q \mathbf{d}_{u'} \oplus \mathbf{W}_k \mathbf{p}_u]}{\sum_{u_o \in \mathcal{U}_k} \mathbf{e}^{\top} [\mathbf{W}_q \mathbf{d}_{u'} \oplus \mathbf{W}_k \mathbf{p}_{u_0}]} \right] & \text{where } \mathbf{d}_{u'} = \sum_{i \in \mathcal{I}_{u'}} \mathbf{q}_i \\ \\ \text{learning:} & \min_{w, \theta} \mathcal{D}_{\mathcal{S}_q}(\hat{R}_q, R_q) & \text{where } R_q = \{r_{ui}\}_{M_q \times N} & \hat{r}_{ui} = f_{\theta}(\tilde{\mathbf{p}}_{\mathbf{u}}, \mathbf{q}_i) \\ \\ \text{objective:} & \min_{w, \theta} \mathcal{D}_{\mathcal{S}_q}(\hat{R}_q, R_q) + \lambda \mathcal{L}_C(\mathbf{P}_k, \tilde{\mathbf{P}}_k) & \mathcal{L}_C(\mathbf{P}_k, \tilde{\mathbf{P}}_k) = \frac{1}{M_q} \sum_{u \in \mathcal{U}_k} \log \frac{\exp(\mathbf{p}_u^{\top} \tilde{\mathbf{p}}_u)}{\sum_{u' \in \mathcal{U}_q} \exp(\mathbf{p}_u^{\top} \tilde{\mathbf{p}}_{u'})} \end{array}$$

regularization: consistency between two estimated embeddings for one user

Our Solutions: Inductive CF Model (Cont.)

- □ Learning procedures: pretraining + adaption
- **Consider two scenarios in open-world recommendation**:
 - few-shot users (limited training data): pretraining on key + adaption on query
 - zero-shot users (no training data): pretraining + self-adaption on key users

Open-world Extrapolation via Graph Learning

Theoretical Analysis

The model possesses the same representation capacity compared to matrix factorization

• The only mild condition is that key users' latent factors span the latent space

The generalization ability on new users depends on number of key users and training instances of new users

Theorem 1. Assume Eq. (3) can achieve $\mathcal{D}_{S_q}(\hat{R}_q, R_q) < \epsilon$ and the optimal \mathbf{P}_k given by Eq. (1) satisfies column-fullrank, then there exists at least one solution for \mathbf{C} in Eq. (2) such that $\mathcal{D}_{S_q}(\hat{R}_q, R_q) < \epsilon$.

$$\min_{\mathbf{P}_k, \mathbf{Q}, \theta} \mathcal{D}_{\mathcal{S}_k}(\hat{R}_k, R_k), \tag{1}$$

$$\min_{\mathbf{C},\mathbf{Q}} \mathcal{D}_{\mathcal{S}_q}(\hat{R}_q, R_q), \tag{2}$$

$$\min_{ ilde{\mathbf{P}}_q, \mathbf{Q}} \mathcal{D}_{\mathcal{S}_q}(\hat{R}_q, R_q),$$

Theorem 2. Assume 1) \mathcal{D} is L-Lipschitz, 2) for $\forall \hat{r}_{u'i} \in \hat{R}_q$ we have $|\hat{r}_{u'i}| \leq B$, and 3) the L1-norm of $\mathbf{c}_{u'}$ is bounded by H. Then with probability at least $1 - \delta$ over the random choice of $\mathcal{S}_q \in ([M_q] \times [N])^{T_q}$, it holds that for any \hat{R}_q , the gap between $\mathcal{D}(\hat{R}_q, R_q)$ and $\mathcal{D}_{\mathcal{S}_q}(\hat{R}_q, R_q)$ will be bounded by

$$O\left(2LHB\sqrt{\frac{2M_q \ln M_k}{T_q}} + \sqrt{\frac{ln(1/\delta)}{T_q}}\right).$$
 (8)

Qitian Wu

Open-world Extrapolation via Graph Learning

(3)

□ Dataset information:

	Dataset	# Users	#Items	# Ratings	Density	# Key/Query Users	# Training/Test Instances
G.	Douban	3,000	3,000	0.13M	0.0152	2,131/869	80,000/20,000
explicit	Movielens-100K	943	1,682	0.10M	0.0630	123,202/13,689	
-	Movielens-1M	6,040	3,706	1.0M	0.0447	5,114/926	900,199/100,021
implicit	Amazon-Books	52,643	91,599	2.1M	0.0012	49,058/3,585	2,405,036/526,430
	Amazon-Beauty	2,944	57,289	0.08M	0.0004	780/2,164	53,464/29,440

Evaluation Protocol:

- Explicit dataset: random split, RMSE & NDCG metric
- Implicit dataset: leave-last-out, AUC & NDCG metric, negative sampling

□ Comparison: CF models, inductive models, feature-based models

Experiment Setup

□ Implementation:

IDCF-NN: feedforward neural network as predictor

$$f_{\theta}(\mathbf{p}_u, \mathbf{q}_i) = \frac{(\mathbf{p}_u^{\top} \mathbf{q}_i + nn([\mathbf{p}_u \| \mathbf{q}_i \| \mathbf{p}_u \odot \mathbf{q}_i]))}{2} + b_u + b_i$$

• IDCF-GC: graph convolution network as predictor

$$\mathbf{m}_{u,m} = ReLU(\frac{1}{|\mathcal{N}_{u,m}|} \sum_{i \in \mathcal{N}_{u,m}} \mathbf{W}_{q,m} \mathbf{q}_i)$$
$$\mathbf{n}_{i,m} = ReLU(\frac{1}{|\mathcal{N}_{i,m}|} \sum_{u \in \mathcal{N}_{i,m}} \mathbf{W}_{p,m} \mathbf{p}_u)$$

 $f(\mathbf{p}_u, \mathbf{q}_i, \{\mathbf{p}_u\}_{u \in \mathcal{N}_i}, \{\mathbf{q}_i\}_{i \in \mathcal{N}_u}) = nn'([\mathbf{p}_u \odot \mathbf{q}_i \| \mathbf{p}_u \odot \mathbf{m}_u \| \mathbf{n}_i \odot \mathbf{q}_i \| \mathbf{n}_i \odot \mathbf{m}_u]) + b_u + b_i$

Qitian Wu

Experiment Results

Comparison results for explicit feedback:

- For few-shot query users, very competitive results as inductive models and very close test performance to transductive models
- For zero-shot new users, significantly outperform **SOTA** inductive models

			Douban			ML-100K		ML-1M		Mathod	Douban		ML-100K		ML-1M						
Method	Inductive	Feature	RM	ISE	ND	CG	RM	ISE	ND	CG	RM	ISE	ND	DCG	Methou	RMSE	NDCG	RMSE	NDCG	RMSE	NDCG
			All	FS	All	FS	All	FS	All	FS	All	FS	All	FS	NIMC	0 766	0.021	1 090	0.864	1.050	0 8 8 2
DME	No	No	0 737	0718	0.030	0.05/	0.032	1 003	0.858	0 8/3	0.851	0.046	0.010	0.040		0.700	0.921	1.009	0.004	1.059	0.005
	INU	NU	0.757	0.710	0.939	0.954	0.952	1.005	0.050	0.045	0.051	0.940	0.919	0.240	BOMIC	0.764	0.920	1.088	0.859	1.057	0.879
NNMF	No	No	0.729	0.705	0.939	0.952	0.925	0.987	0.895	0.878	0.848	0.940	0.920	0.937	FISM	1 910	0 824	1 891	0 760	2 283	0 771
GCMC	No	No	0.731	0.706	0.938	0.956	0.911	0.989	0.900	0.886	0.837	0.947	0.923	0.939		1.710	0.021	1.0/1	0.700	2.205	0.771
															MultVAE	2.783	0.823	2.865	0.758	2.981	0.792
NIMC	Yes	Yes	0.732	0.745	0.928	0.931	1.015	1.065	0.832	0.824	0.873	0.995	0.889	0.904	IGMC	0.743		1.051	-	0.997	-
BOMIC	Yes	Yes	0.735	0.747	0.923	0.925	0.931	1.001	0.828	0.815	0.847	0.953	0.905	0.924	IDCF-NN	0.749	0.955	1.078	0.877	0.994	0.941
F-EAE	Yes	No	0.738	-	-	-	0.920		-	-	0.860	-	-	-	IDCF-GC	0.723	0.955	1.011	0.881	0.957	0.942
IGMC	Yes	No	0.721	0.728	-	-1	0.905	0.997	-	-	0.857	0.956	-	-			00000		01001		
IDCF-NN (ours)	Yes	No	0.738	0.712	0.939	0.956	0.931	0.996	0.896	0.880	0.844	0.952	0.922	0.940							
IDCF-GC (ours)	Yes	No	0.733	0.712	<u>0.940</u>	0.956	0.905	<u>0.981</u>	<u>0.901</u>	0.884	<u>0.839</u>	0.944	<u>0.924</u>	0.940							

Lower RMSE and higher NDCG are better

Qitian Wu

Experiment Results

Comparison results for implicit feedback:

- For few-shot query users, achieve SOTA results
- For zero-shot new users, significantly improvement

Mathod		Amazo	n-Book	8	Amazon-Beauty						
Method	AU	JC	ND	CG	AU	JC	NDCG				
	Query	New	Query	New	Query	New	Query	New			
PMF	0.917	(1)	0.888	2	0.779	24	0.769	24			
NNMF	0.919	-	0.891	=	0.790	-	0.763	3			
NGCF	0.916	-	0.896	-	0.793	-	0.775	-			
PinSAGE	0.923	-	0.901	.	0.790	-	0.775	÷			
FISM	-	0.752	-	0.792		0.613	-	0.678			
MultVAE	-	0.738	-	0.701	3 <u>14</u>	0.644	14	0.679			
IDCF-NN	0.944	0.939	0.928	0.920	0.792	0.750	0.783	0.774			
IDCF-GC	0.938	0.946	0.921	0.930	0.801	0.791	0.772	0.791			

Higher AUC and higher NDCG are better

Experiment Results

□ Further discussions:

- Our model can exceed transductive models w,r,t, RMSE when users' training/historical ratings are sparse
- There exist informative key users that contribute to most of capacity. Key users
 with more historical ratings tend to be more important
- The training time scales linearly w.r.t. dataset size

Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach

Advances in Neural Information Processing Systems (NeurIPS'21)

Qitian Wu, Chenxiao Yang, Junchi Yan Department of Computer Science and Engineering Shanghai Jiao Tong University

Background for Attribute Feature Learning

General problem: learn a mapping from input features to labels

- Input data $\mathbf{x} = [x_1, x_2, \cdots, x_d]$ where x_i denotes the i-th input feature
- Assume a prediction model $f:\mathbf{x} \rightarrow y$ and objective

$$f^* = \arg\min_{f} \mathbb{E}_{(\mathbf{x},y)\sim D}[l(f(\mathbf{x}),y)]$$

Applications

- Tabular data: weather/income/usage prediction, disease diagnosis...
- Real systems: recommendation, advertisement, question answering...

Scenario 1:		age	000	edu	income	Scenario 2:	amazon.com		Recomn	nended for You	uner fonturen
Predict a	<i>o</i> 1	<i>x</i> ₁₁	x_{12}	x_{13}	y_1	Predict whether	Amazon.com has new re or told us you own.	ecommendation:	s for you based o	on <u>items</u> you purchased	user leatures:
person's	02	x ₂₁	x_{22}	x_{23}	y_2	a user would	BIG	-		WEE WHEN	item features:
income with	03	x ₃₁	x_{32}	x_{33}	?	click an item	TOM PETERS	Sancinata Yaur	Sharlack	Alica in	category/price
aga/occ/edu				••		with attributes	Things: 163 Ways to Pursue F EXCELLENCE	7 Triggers to Persuasion and Captivation	Holmes [Blu- ray]	<u>Wonderland</u> [Blu-ray]	5 7 1

Challenges and Limitations of Neural Networks

□ Challenges for attribute feature learning

- New features dynamically appear (unseen features in test set)
- Scenarios: heterogeneous data sources, multi-modal data

$\hfill\square$ How can neural networks deal with new features

- Retraining from scratch
 Issue: time-consuming
- Incremental learning on new features

 Issue: over-fitting & catastrophic forgetting

Inductive reasoning ability

• Humans possess inherent ability for understanding new infromation

features

25

training data

nstances

label

Open-world Extrapolation via Graph Learning

Problem Formulation

□ Preprocessing: convert raw inputs to multi-hot vectors

- Raw input $\mathbf{r}_i = [r_{i1}, r_{i2}, \cdots, r_{id}]$ where r_{im} denotes the m-th raw feature
- For categorical feature: one-hot encoding representation
- For continuous feature: first discretization then one-hot encoding

 $\mathbf{x}_i = [\mathbf{x}_i^1, \mathbf{x}_i^2, \cdots, \mathbf{x}_i^d]$ where \mathbf{x}_i^m is a one-hot vector

Open-world feature extrapolation:

□ Two cases causing feature space expansion:

1) new raw features come, 2) unseen feature values out of known range

Key Observation 1: Permutation-Invariance

Neural networks can be decomposed into two parts

 $\hat{y}_i = h(\mathbf{x}_i; \phi, \mathbf{W})$ $\longleftrightarrow \left\{ \begin{array}{l} \mathbf{z}_i = \mathbf{W} \mathbf{x}_i \\ \hat{y}_i = \mathrm{FFN}(\mathbf{z}_i; \phi) \end{array} \right\}$

Equivalent view: feature embedding look-up + embedding aggregation

Key Observation 2: Feature-Data Graph

□ The input feature-data matrix can be treated as a bipartite graph

Key insight:

Convert inferring embeddings for new features to inductive representation on graphs

Observed Data Matrix

Feature-Data Graph

Proposed Model Framework: FATE

High-level GNN: take feature-data matrix as input and update feat. embeddings
 Low-level backbone: take each instance as input and output prediction

Qitian Wu

Details for Proposed Model

GNN model feedforward

- Feature nodes $\{\mathbf{w}_j\}_{j=1}^D$ (initial embeddings as $\mathbf{w}_i^{(0)}$)
- Instance nodes $\{\mathbf{s}_i\}_{i=1}^N$ (initial states $\mathbf{s}_i^{(0)} = \mathbf{0}$)
- Message passing rule:

$$\begin{aligned} \mathbf{a}_{i}^{(l)} &= \operatorname{AGG}(\{\mathbf{w}_{k}^{(l-1)} | \forall k, x_{ik} = 1\}) \\ \mathbf{s}_{i}^{(l)} &= \mathbf{P}^{(l)} \operatorname{COMB}\left(\mathbf{s}_{i}^{(l-1)}, \mathbf{a}_{i}^{(l-1)}\right) \\ \mathbf{b}_{j}^{(l)} &= \operatorname{AGG}(\{\mathbf{s}_{k}^{(l-1)} | \forall k, x_{jk} = 1\}) \\ \mathbf{w}_{j}^{(l)} &= \mathbf{P}^{(l)} \operatorname{COMB}\left(\mathbf{w}_{j}^{(l-1)}, \mathbf{b}_{j}^{(l-1)}\right) \end{aligned}$$

Details for Proposed Model

□ Entire feedforward compute

- Query feature embeddings

 □ For old features: W
 □ For new features: set as zero
- Updata feature embeddings $\hat{\mathbf{W}} = [\mathbf{w}_{j}^{(L)}]_{j=1}^{D} = g(\mathbf{W}, \mathbf{X}; \omega)$
- Assign to backbone and output predicted results

 $\hat{y}_i = h(\mathbf{x}_i; \phi, \hat{\mathbf{W}})$

Note: 1) X can be either training or test data; 2) the permutation-invarance and graph representation enables arbitrarily sized X

Proposed Training Approach

Two useful techniques for learning to extrapolate

- Proxy training data
 - Self-supervised learning:
 n-fold splitting input features
 inductive learning:

k-shot sampling input features

- Asynchronous Updates

 Fast/slow for backbone/GNN
- DropEdge regularization
- □ Scaling to large systems
 - Mini-batches along the instance dimension (complexity O(Bd))

(b) inductive learning with k-shot sampling

Generalization Error Analysis

□ Key aspect: we treat input data matrix as a whole and the proposed proxy data-based training approach samples data point from $S = \{(\mathbf{X}_1, Y_1), (\mathbf{X}_2, Y_2), \dots, (\mathbf{X}_M, Y_M)\}$ where $M \propto O\left(\frac{d!}{(d-k)!k!}\right)$ The empirical risk over training data $R_{emb}(h_{\mathcal{S}}) = \frac{1}{M} \sum_{i=1}^{M} \mathcal{L}(Y_m, h(\mathbf{X}_m; \psi_{\mathcal{S}}))$ □ The generalization error can be defined as $R(h_{\mathcal{S}}) = \mathbb{E}_{(\mathbf{X},Y)}[\mathcal{L}(Y,h(\mathbf{X};\psi_{\mathcal{S}}))]$ □ We care about expected generalization gap over random sampling $\mathbb{E}_{A}[R(h_{\mathcal{S}}) - R_{emp}(h_{\mathcal{S}})]$

Generalization Error Analysis (Cont.)

□ Theorem. Assume the loss function is bounded by $l(y_i, \hat{y}_i) \le \lambda$. For a learning algorithm trained on data $\{X_{tr}, Y_{tr}\}$ with T iterations of SGD updates, with probability at least $1 - \delta$, we have

$$\mathbb{E}_A[R(h_{\mathcal{S}}) - R_{emp}(h_{\mathcal{S}})] \le \mathcal{O}(\frac{d^T}{M}) + \left(\mathcal{O}(\frac{d^T}{M^2} + \lambda)\sqrt{\frac{\log(1/\delta)}{2M}}\right)$$

where $M \propto O\left(\frac{d!}{(d-k)!k!}\right)$ and k denotes the size of sampled features

Note: 1) The generalization gap depends on the number of raw features, i.e. d
2) The size M is determined by the configuration of proxy training data. (If there is more randomness, then M would be larger)

Is larger M always better? No! larger variance and larger optimization error

Experiments on UCI Datasets

Dataset	Domain	#Instances	#Raw Feat.	Cardinality	#0-1 Feat.	#Class	features label
						-	
Gene	Life	3190	60	$4 \sim 6$	287	3	
Protein	Life	1080	80	$2 \sim 8$	743	8	S training data
Robot	Computer	5456	24	9	237	4	Ye Y
Drive	Computer	58509	49	9	378	11	
Calls	Life	7195	10	4~10	219	10	·- test data
Github	Social	37700		\sim	4006	2	

Evaluation: training on observed features and testing on all features

- Instance-level: random split all the instances into training/validation/test data
- Feature-level: random split all the features into observed/unobserved features

□ Baselines/Competitors:

- Base (use observed features for tr/te), Oracle (use all features for tr)
- Simple extrapolation approaches: Avg, KNN, Mean pooling
- Incremental learning (first train on observed feat, then retrain on unobserved)

□ Implementation: 3-layer NN as backbone, 4-layer GNN

Experiments on UCI Datasets

Resutls: 1) FATE (ours) yields 7.3% higher acc. and 1.3% higher AUC than Base
 2) FATE achieves very close performance to Oracle (using all features)
 2) FATE produces 29.8% higher acc. than baselines Avg, KNN, Pooling
 3) FATE even outperforms INL in most cases with averagely 4.1% impv.

Experiments on UCI Datasets

Figure. T-SNE visualization of feature embeddings produced by FATE (ours) and Oracle. Red for observed features and yellow for unobserved ones.

Key insights: 1) FATE's produced embeddings for observed/unobserved features

have dissimilar distributions compared to Oracle

FATE manages to extract some informative knowledge from new features

2) The embeddings of FATE form some particular structures

FATE could further capture feature-level relations through GNN interaction

Qitian Wu

Open-world Extrapolation via Graph Learning

Experiments on Advertisement Click Prediction

Scenario: click-through rate (CTR) prediction for online advertisement

- Goal: predict whether a user would click on a displayed ad. (binary classification)
- Input: attribute features for users/ads

□ Typical features: device id, site id, app id, ad category, app category, etc.

□ The ID features have massive values which induces large feature dimensions

Dataset	Domain	#Instances	#Raw Feat.	Cardinality	#0-1 Feat.	#Class
Avazu	Ad.	40,428,967	22	5~1611749	2,018,025	2
Criteo	Ad.	45,840,617	39	5~541311	2,647,481	2

Evaluation: chronologically split all the instances into 10-fold

- Use first subset for training, second for validation and the remaining for test
- ~1.3M/~0.4M/~0.8M exclusive features in training/validation/test data in Criteo

Implementation: 3-layer NN/DeepFM as backbones

Experiments on Advertisement Click Prediction

Dataset	Backbone	Model	T1	T2	Т3	T4	T5	T6	T7	T 8	Overall
Avazu	NN	Base Pooling FATE	0.666 0.655 0.689	0.680 0.671 0.699	0.691 0.683 0.708	0.694 0.683 0.710	0.699 0.689 0.715	0.703 0.694 0.720	0.705 0.697 0.721	0.705 0.697 0.721	$\begin{array}{c} 0.693 \pm 0.012 \\ 0.684 \pm 0.011 \\ \textbf{0.710} \pm 0.010 \end{array}$
	DeepFM	Base Pooling FATE	0.675 0.666 0.692	0.684 0.676 0.702	0.694 0.685 0.711	0.697 0.685 0.714	0.699 0.688 0.718	0.706 0.693 0.722	0.708 0.694 0.724	0.706 0.694 0.724	$\begin{array}{c} 0.697 \pm 0.009 \\ 0.685 \pm 0.009 \\ \textbf{0.713} \pm 0.010 \end{array}$
Criteo	NN	Base Pooling FATE	0.761 0.761 0.770	0.761 0.762 0.769	0.763 0.764 0.771	0.763 0.763 0.772	0.765 0.766 0.773	0.766 0.767 0.774	0.766 0.768 0.774	0.766 0.768 0.774	$\begin{array}{c} 0.764 \pm 0.002 \\ 0.765 \pm 0.001 \\ \textbf{0.772} \pm 0.001 \end{array}$
	DeepFM	Base Pooling FATE	0.772 0.772 0.781	0.771 0.772 0.780	0.772 0.773 0.782	0.772 0.774 0.782	0.774 0.776 0.784	0.774 0.776 0.784	0.774 0.776 0.784	0.774 0.776 0.784	$\begin{array}{c} 0.773 \pm 0.001 \\ 0.774 \pm 0.002 \\ \textbf{0.783} \pm 0.001 \end{array}$

Table. ROC-AUC results for eight test sets (T1 - T8) on Avazu and Criteo

Resutls: FATE achieves significantly improvements over Base/Pooling with different

backbones (NN and DeepFM^[1])

[1] H. Guo, R. Tang, Y. Ye, Z. Li, and X. He. Deepfm: A factorization-machine based neural network for CTR prediction. In International Joint Conference on Artificial Intelligence, 2017.

Qitian Wu

Open-world Extrapolation via Graph Learning

Scalability Test for Large Datasets

Figure 1. Scalability w.r.t. batch sizes

Figure 2. Scalability w.r.t. feature numbers

Resutls: FATE yields linear time/space scalability w.r.t. data and feature sizes
Promising for larger datasets and real systems

The feature-data graph representation and GNN learning induces complexity O(Bd)

Qitian Wu

Comparison with Other Learning Problems

• Our differences: 1) no extra side information, 2) different feature space

Conclusions

□ The main ideas of *open-world recommendation* [ICML'21]:

1) partition entities into two groups

2) learn a latent graph among entities and compute new entities' embeddings using those of existing ones

Depending Potential applications:

- For entity representation extrapolation, e.g. in knowledge graphs
- Transferring embeddings from well-trained concepts to long-tail ones

□ Future works:

- More expressive architecture, e.g. flow model
- Further theoretical understanding for capacity and generalization

Conclusions

□ The main ideas of *open-world feature extrapolation* [NeurIPS'21]:

1) instance-feature matrix as a graph

2) convert feature embedding learning to graph representation learning (extrapolation via message passing)

Dependential applications:

- New attribute features for question answering and reasoning (NLP)
- Information from new sensors for robot learning and decisions (Robot)
- Novel drugs or combination for healthcare treatment (Life Science/Healthcare)
- Extra annotation features for image learning and understanding (Vision)

References

[1] Qitian Wu, Chenxiao Yang, Junchi Yan, Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach, Advances in Neural Information Processing Systems (NeurIPS'21)

[2] Qitian Wu, Hengrui Zhang, Xiaofeng Gao, Junchi Yan, Hongyuan Zha, Towards Open-World Recommendation: An Inductive Model-Based Collaborative Filtering Approach. International Conference on Machine Learning (ICML'21)

[3] Hengrui Zhang, Qitian Wu, Junchi Yan, David Wipf, Philip S Yu, From Canonical Correlation Analysis to Self-supervised Graph Neural Networks, Advances in Neural Information Processing Systems (NeurIPS'21)

Thanks for listening!

contact: echo740@sjtu.edu.cn