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Data with Observed Geometry (Graphs)

 Graph-structured data are ubiquitous in various domains
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molecular social network knowledge graph code

Challenge: 1) Arbitrary size and geometric symmetry                   
2) Complex topological structure

 How to leverage the relational information of inter-dependent data?



Data with Unobserved Geometry 
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 How to learn and leverage latent structures from observed data?

Observed data lies on low-
dimensional manifold
[Sebastian et al., 2021]

Physical interactions affect data 
generation yet are not observed
[Alvaro et al., 2020]

Complex hidden structures 
in scientific applications 
[Xu et al., 2020]

 Real-world data generation involves hidden interactions

Challenge: 1) Combinatorial searching space               
2) Scalability for large-scale systems



Learning under Closed-World Assumptions

Model

Train

interpolation tasks

Evaluate

model performance

fitting error generalization gap

negligibly smallmodel expressivity
matters!

Q2: Is there any principled guideline for 
designing new models?

Open research question:
Q1: What is the underlying mechanism 
of existing models (e.g., GNNs) ?
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GNN Feed-forward as Diffusion Process
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Treat the feed-forward update of embeddings as a 
diffusion process of heat on locations

Qitian Wu et al., DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, ICLR 2023 



General Formulation of Diffusion Process
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The diffusion process of N particles driven by initial states and pairwise interactions:

gradient divergence diffusivity function

Diffusion over discrete space composed of N instances with latent structures:

Qitian Wu et al., DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, ICLR 2023 



       can have non-zero values for all entries: all-pair message passing

        is an identity matrix: message passing only through self-loops

The            diffusivity        is a measure of the rate at which the node signals spread

Diffusion with Latent Structures 
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The iterative dynamics (by explicit scheme) of diffusion induce feed-forward layers:

       only has non-zero values for observed edges: message passing over a graph

MLP GNN Transformer

Key question: How to determine a 
proper diffusivity function for learning 
desirable node representations? 



Energy-Constrained Diffusion Process
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Principle 1: particle 
states evolution 
described by a 
diffusion process

Principle 2: the 
evolutionary directions 
towards descending 
the global energy

Key insight: treat diffusivity as 
latent variables whose optimality 
is given by descent criteria w.r.t. 
a principled global energy

+

Qitian Wu et al., DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, ICLR 2023 



Diffusion Equation v.s. Energy Minimization
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Theorem 1 (Diffusion equation with fixed diffusivity as energy minimization dynamics) 
The diffusion equation of node embeddings                       with fixed diffusivity matrix

 
induces dynamics implictly minimizing  a global energy function 

where

Graph Convolution Networks 
[Kipf and Welling, 2017] 

Graph Isomorphism Networks 
[Xu et al., 2019] 

PageRank Propagation Networks 
[Klicpera et al., 2019] 

Qitian Wu et al., DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, ICLR 2023 



Closed-Form Solutions for Diffusion Dynamics
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Theorem 2 (Optimal diffusivity estimates for diffusion with time-dependent diffusivity) 
For any regularized energy over                      defined by the form

 
where                        is a concave, non-decreasing function, the diffusion process with diffusivity

yields a descent step on the energy, i.e., 

Diffusivity Inference:

State Update:

One-layer update 
of DIFFormer

Qitian Wu et al., DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, ICLR 2023 



Interpretations of MLP/GNNs as Diffusion
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MLP 

Energy function Diffusivity Illustration 

GCN 

GAT 

DIFFormer 

Qitian Wu et al., DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, ICLR 2023 



(                             ) 

Scalable All-Pair Message Passing with O(N)
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 Kernelized softmax message passing

is a positive-definite kernel 

two summation are shared by all nodes (independent of u) 
—— only compute once 

[Mercer's theorem] 
is a random feature map 

where 

where 

computation complexity

(                           ) 

Qitian Wu et al., NodeFormer: A Scalable Graph Structure Learning Transformer for Node Classification, NeurIPS 2022 



Results on Large-Graph Benchmarks
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Results of testing accuracy on two 
large-scale graph datasets

Qitian Wu et al., DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, ICLR 2023 

Original Transformers requires 24TB GPU memory

Improve accuracy by 
+5.8% over GNNs

DIFFormer (ours) only requires 3GB GPU memory

8000x space reduction

DIFFormer

30x inference time reduction



Pytorch Implementation
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github repo

tutorial



Experiment Results
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Results on large node classification graphs 

Mini-batch training for proteins, Amazon2M, pokec with batch size 10K/100K   
SGFormer can be trained in full-graph manner on obgn-arxiv   

For Papers100M, using batch size 0.4M only requires 3.5 hours on a 24GB GPU  

Qitian Wu et al., Simplifying and Empowering Transformers for Large-Graph Representations, NeurIPS 2023 



More Application Scenarios
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Diffusivity estimates of DIFFormer-s Diffusivity estimates of DIFFormer-a 

Scenario 1: predicting spatial-temporal dynamics with interpretable latent structures 

Scenario 2: handling tasks 
with latent structures in 
broad areas (particle 
physics, biochemistry, etc.)



Towards Open-World Learning

extrapolation tasks

Train

Evaluate

Model

model performance

fitting error generalization gap

can be 
arbitrarily large!too small to be good

Q2: How to design provably effective 
generalization approach?

Open research question:
Q1: How powerful are existing models 
for generalization tasks?

train domain test domain
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Out-of-Distribution Data from Open World

Graph data from multiple domains Dynamic temporal networks

 Distribution shifts cause different data distributions
 New data from unknown distribution are unseen by training

Generalization is impossible w/o any assumption (no free-lunch theorem)
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Theoretical Motivation
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Proposition 1 (Failure of Empirical Risk Minimization) 

Let the risk under environment      be                                                                  

The unique optimal solution for objective                        would be                                           where   
             denotes the standard deviation of     across environments. 

Proposition 2 (Success of Risk Variance Minimization) 
The objective                        reaches the optimum if and only if                      .

node features

predictive model

ideal solutions

causal features



Causal Invariance Principle
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Theorem 1 (Guarantee of Valid OOD solution) 
Under causal assumptions, if the GNN encoder                 satisfies that 1)                         (invariance 
condition) and 2)               is maximized (sufficiency condition), then the model       given by             
is the solution to the formulated OOD problem.

There exists a portion of causal 
information within input ego-graph for 
prediction task of each individual node

The “causal” means two-fold properties:
   1) invariant across environments
   2) sufficient for prediction 

causal features

non-causal features

Bernhard Sch¨olkopf, et al., “Invariant models for causal transfer learning”.

Qitian Wu, et al., “Handling Distribution Shifts on Graphs: An Invariance Perspective”, in ICLR'22



Explore-to-Extrapolate Risk Minimization 
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  Model instantiations: 
•            GNN (output node-level prediction) 

•              Graph Editer (modify graph structures) 

context generator

Environment 
Exploration

Risk 
Extrapolation

Qitian Wu, et al., “Handling Distribution Shifts on Graphs: An Invariance Perspective”, in ICLR'22

• Training: REINFORCE + Gradient Descent



Experiment on Cross-Graph Transfer

EERM achieves up to 7.0% (resp. 7.2%) impv. on ROC-AUC (resp. accuracy) than ERM

training data testing datamodel
graph 1
graph 2
…

unseen 
graphdifferent 

domains

Qitian Wu, et al., “Handling Distribution Shifts on Graphs: An Invariance Perspective”, in ICLR'22
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Experiment on Temporal Graph Evoluation 

EERM achieves up to  9.6%/10.0% impv using GraphSAGE/GPR-GNN as backbones

training data testing data

graph
snapshot 1

…graph
snapshot 1

graph
snapshot M

graph
snapshot K

… …

model

Qitian Wu, et al., “Handling Distribution Shifts on Graphs: An Invariance Perspective”, in ICLR'22
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Applications for Recommender Systems

Observation:
There exists latent context (from 
external effects) that spuriously 
correlates user clicking behaviors 

Alleviate drop on
NDCG by 47.77% 
Hit Ratio by 35.73%  

Key insights:
Learning invariant user interests that 
causally relate to the clicking behaviors
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Qitian Wu, et al., “Towards Out-of-Distribution Sequential Event Prediction: A Causal Treatment”, in NeurIPS'22



Applications for Molecular Analysis

Key insights:
Learning molecular substructures that induce 
invariant predictive relations with the labels

+ 5.9% and + 3.9% 
improvement over the 
strongest baselines on 
OGB-Mole and DrugOOD

(a) Environment Inference

query

(b) Molecular Representation Learning

Complete 
Encoder 

Substructure 
Encoder 

de
co

m
po

se

Pr
ed

ic
to

r

su
bs

tru
ct

ur
es

attentive
pooling 

OH

Environment 
Classifier 

                    

Conditional 
GNN 

 
O

H

Observation:
There exist certain priviledged substructures 
that causally relate to the target property
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Qitian Wu, et al., “Learning Substructure Invariance for Out-of-Distribution Molecular Representations”, in NeurIPS'22



Conclusions
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Closed-world: representation Open-world: generalization

Linearly complex global attention [NeurIPS'22]

The Open Challenge of Learning with Non-IID Data

Diffusion-inspired graph Transformers [ICLR'23]

Universal structure learning [KDD'23]

Simplifying Global Transformers [NeurIPS'23]

Feature space extrapolation [NeurIPS'21]

Learning with distribution shifts [ICLR'22]

Theoretical understandings of generalization [ICLR'23]
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[8] Chenxiao Yang, QItian Wu, et al., Graph Neural Networks are Inherently Good Generalizers: Insights by Bridging GNNs and MLPs, in ICLR'23
[9] Wentao Zhao, Qitian Wu, et al., GraphGLOW: Universal and Generalizable Structure Learning for Graph Neural Networks, in SIGKDD'23 (oral)

Invariant substructure learning [NeurIPS'22]



DIFFormer: Instantiations of Diffusivity
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DIFFormer layer with simple diffusivity (DIFFormer-s): 

DIFFormer layer with advanced diffusivity (DIFFormer-a): 

complexity 
bottleneck

complexity 
bottleneck



DIFFormer: Extension to a Transformer Layer

1/16/2024 Learning with Non-IID Data 28

Incorporation of input graphs (if available): add graph convolution with global attention  

DIFFormer layer for updating embedding of the next layer:   

can be specified as DIFFormer-s 
or DIFFormer-a attention



DIFFormer: Scaling to Large-Scale Datasets
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Large-scale datasets with massive amount of data, e.g., N instances (N can be arbitrarily large)

Existing solutions: 1. neighbor sampling (slow training and limited receptive field)
                                 2. graph clustering (time-consuming pre-processing and limited receptive field)

Traditional IID learning enables mini-batch learning with a moderate batch size B << N

How can message passing networks handle large-scale graphs?

Our solution: partition instances into random mini-batches with a large batch size B 

The advantage of DIFFormer:
less/no reliance on input graphs
enables large batch size



 How to deal with the non-IID nature of nodes in a graph?

 Graph notation: A graph                    , adjacency matrix                              
node features                            , node labels

    where     denotes environment (that affects data generation)

Problem Formulation
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Decompose a graph into pieces 
of ego-graphs



 Out-of-distribution generalization on graphs:

 Graph notation: A graph                    , adjacency matrix                              
node features                            , node labels

    where     denotes environment (that affects data generation)

Problem Formulation
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• A graph      can be divided into pieces of ego-graphs
• The data generation process: 1) the entire graph is generated via                        ,
    2) each node's label is generated via 
• Denote      as the support of env. and            as the loss function 

sample node-level label conditioned 
on ego-graph and environment

loss function for 
node-level prediction

sample a whole graph from 
a specific environment

learn a classifier 
robust for worst case


