

Learning with Non-IID Data from Physics Principles

Qitian Wu

https://qitianwu.github.io/

饮水思源·爱国荣校

Data with Observed Geometry (Graphs)

□ Graph-structured data are ubiquitous in various domains

□ How to leverage the relational information of inter-dependent data?

Challenge: 1) Arbitrary size and geometric symmetry 2) Complex topological structure

Data with Unobserved Geometry

Real-world data generation involves hidden interactions

Observed data lies on lowdimensional manifold [Sebastian et al., 2021]

Physical interactions affect data generation yet are not observed [Alvaro et al., 2020]

Complex hidden structures in scientific applications [Xu et al., 2020]

How to learn and leverage latent structures from observed data?

Challenge: 1) Combinatorial searching space

2) Scalability for large-scale systems

Learning under Closed-World Assumptions

Open research question:

Q1: What is the underlying mechanism of existing models (e.g., GNNs) ?

Q2: Is there any principled guideline for designing new models?

GNN Feed-forward as Diffusion Process

Qitian Wu et al., DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, ICLR 2023

1/16/2024

General Formulation of Diffusion Process

The diffusion process of N particles driven by initial states and pairwise interactions:

Diffusion over discrete space composed of N instances with latent structures:

$$\frac{\partial \mathbf{z}_i(t)}{\partial t} = \sum_{j=1}^N \mathbf{S}_{ij}(\mathbf{Z}(t), t)(\mathbf{z}_j(t) - \mathbf{z}_i(t))$$

Qitian Wu et al., DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, ICLR 2023

1/16/2024

Diffusion with Latent Structures

The iterative dynamics (by explicit scheme) of diffusion induce feed-forward layers:

$$\mathbf{z}_{i}^{(k+1)} = \left(1 - \tau \sum_{j=1}^{N} \mathbf{S}_{ij}^{(k)}\right) \mathbf{z}_{i}^{(k)} + \tau \sum_{j=1}^{N} \mathbf{S}_{ij}^{(k)} \mathbf{z}_{j}^{(k)}$$

The $N \times N$ diffusivity $S^{(k)}$ is a measure of the rate at which the node signals spread

- S^(k) is an identity matrix: message passing only through self-loops
- $S^{(k)}$ only has non-zero values for observed edges: message passing over a graph
- S^(k) can have non-zero values for all entries: all-pair message passing

Key question: How to determine a proper diffusivity function for learning desirable node representations?

1/16/2024

Energy-Constrained Diffusion Process

Principle 1: particle states evolution described by a diffusion process

Principle 2: the evolutionary directions towards descending the global energy

Key insight: treat diffusivity as latent variables whose optimality is given by descent criteria w.r.t. a principled global energy

Qitian Wu et al., DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, ICLR 2023

1/16/2024

Diffusion Equation v.s. Energy Minimization

Theorem 1 (Diffusion equation with fixed diffusivity as energy minimization dynamics)

The diffusion equation of node embeddings $\mathbf{Z} = \{\mathbf{z}_i\}_{i=1}^N$ with fixed diffusivity matrix

$$\frac{\partial \mathbf{z}_i(t)}{\partial t} = \sum_{j \in \mathcal{V}} \mathbf{S}_{ij}(\mathbf{z}_j(t) - \mathbf{z}_i(t)) + \beta \mathbf{h}_i \quad \text{where} \quad \mathbf{S} = \{s_{ij}\}_{N \times N}$$

induces dynamics implictly minimizing a global energy function

$$E(\mathbf{Z}, t) = \|\mathbf{Z} - \mathbf{Z}(t) - \eta \mathbf{H}\|_{\mathcal{F}}^2 + \lambda \sum_{i,j} s_{ij} \|\mathbf{z}_i - \mathbf{z}_j\|_2^2$$

Graph Convolution Networks [Kipf and Welling, 2017]

Graph Isomorphism Networks [Xu et al., 2019]

PageRank Propagation Networks [Klicpera et al., 2019]

$$\mathbf{z}_{i}^{(k+1)} = (1-\tau)\mathbf{z}_{i}^{(k)} + \tau \sum_{j \in \mathcal{N}(i)} \frac{1}{\sqrt{d_{i}d_{j}}} \mathbf{z}_{j}^{(k)} \qquad \mathbf{S} = \mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}}$$

$$\mathbf{z}_i^{(k+1)} = (1+\tau)\mathbf{z}_i^{(k)} + \tau \sum_{j \in \mathcal{N}(i)} \mathbf{z}_j^{(k)} \qquad \mathbf{S} = \mathbf{A} + \mathbf{I}$$

$$\mathbf{z}_{i}^{(k+1)} = (1-\tau)\mathbf{z}_{i}^{(k)} + \tau \sum_{j \in \mathcal{N}(i)} \frac{1}{\sqrt{d_{i}d_{j}}} \mathbf{z}_{j}^{(k)} + \tau \beta \mathbf{z}^{(0)} \qquad \mathbf{S} = \mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}}$$

Qitian Wu et al., DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, ICLR 2023

1/16/2024

Closed-Form Solutions for Diffusion Dynamics

Theorem 2 (Optimal diffusivity estimates for diffusion with time-dependent diffusivity)

For any regularized energy over $\mathbf{Z} = \{\mathbf{z}_i\}_{i=1}^N$ defined by the form

$$E(\mathbf{Z}, k; \delta) = \|\mathbf{Z} - \mathbf{Z}^{(k)}\|_{\mathcal{F}}^2 + \lambda \sum_{i \neq j} \delta(\|\mathbf{z}_i - \mathbf{z}_j\|_2^2)$$

where $\delta : \mathbb{R}^+ \to \mathbb{R}$ is a concave, non-decreasing function, the diffusion process with diffusivity

$$\hat{\mathbf{S}}_{ij}^{(k)} = \frac{\omega_{ij}^{(k)}}{\sum_{l=1}^{N} \omega_{il}^{(k)}}, \quad \omega_{ij}^{(k)} = \left. \frac{\partial \delta(z^2)}{\partial z^2} \right|_{z^2 = \|\mathbf{z}_i^{(k)} - \mathbf{z}_j^{(k)}\|_{z^2}}$$

yields a descent step on the energy, i.e., $E(\mathbf{Z}^{(k+1)}, k; \delta) \leq E(\mathbf{Z}^{(k)}, k-1; \delta)$

 $\begin{array}{l} \textbf{One-layer update} \\ \textbf{of DIFFormer} \end{array} \quad \begin{array}{l} \textbf{Diffusivity Inference:} \quad \hat{\textbf{S}}_{ij}^{(k)} = \frac{f(\|\textbf{z}_i^{(k)} - \textbf{z}_j^{(k)}\|_2^2)}{\sum_{l=1}^N f(\|\textbf{z}_i^{(k)} - \textbf{z}_l^{(k)}\|_2^2)}, \quad 1 \leq i, j \leq N \\ \textbf{State Update:} \quad \textbf{z}_i^{(k+1)} = \left(1 - \tau \sum_{j=1}^N \hat{\textbf{S}}_{ij}^{(k)}\right) \textbf{z}_i^{(k)} + \tau \sum_{j=1}^N \hat{\textbf{S}}_{ij}^{(k)} \textbf{z}_j^{(k)}, \quad 1 \leq i \leq N \end{array}$

Qitian Wu et al., DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, ICLR 2023

1/16/2024

Interpretations of MLP/GNNs as Diffusion

	Energy function	Diffusivity	Illustration
MLP	$\ \mathbf{Z}-\mathbf{Z}^{(k)}\ _2^2$	$\mathbf{S}_{ij}^{(k)} = \begin{cases} 1, & \text{if } i = j \\ 0, & otherwise \end{cases}$	
GCN	$\sum_{(i,j)\in\mathcal{E}} \ \mathbf{z}_i - \mathbf{z}_j\ _2^2$	$\mathbf{S}_{ij}^{(k)} = \begin{cases} \frac{1}{\sqrt{d_i d_j}}, & \text{if } (i,j) \in \mathcal{E} \\ 0, & otherwise \end{cases}$	
GAT	$\sum_{(i,j)\in\mathcal{E}}\delta(\ \mathbf{z}_i-\mathbf{z}_j\ _2^2)$	$\mathbf{S}_{ij}^{(k)} = \begin{cases} \frac{f(\ \mathbf{z}_i^{(k)} - \mathbf{z}_j^{(k)}\ _2^2)}{\sum_{l:(i,l) \in \mathcal{E}} f(\ \mathbf{z}_i^{(k)} - \mathbf{z}_l^{(k)}\ _2^2)}, & \text{if } (i,j) \in \mathcal{E} \\ 0, & otherwise \end{cases}$	
DIFFormer	$\ \mathbf{Z} - \mathbf{Z}^{(k)}\ _2^2 + \lambda \sum_{i,j} \delta(\ \mathbf{z}_i - \mathbf{z}_j\ _2^2)$	$\mathbf{S}_{ij}^{(k)} = \frac{f(\ \mathbf{z}_i^{(k)} - \mathbf{z}_j^{(k)}\ _2^2)}{\sum_{l=1}^N f(\ \mathbf{z}_i^{(k)} - \mathbf{z}_l^{(k)}\ _2^2)}, 1 \le i, j \le N$	

Qitian Wu et al., DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, ICLR 2023

1/16/2024

Learning with Non-IID Data

11

Scalable All-Pair Message Passing with O(N)

Kernelized softmax message passing

$$\mathbf{z}_{u}^{(l+1)} = \sum_{v=1}^{N} \frac{\left[\exp(\mathbf{q}_{u}^{\top} \mathbf{k}_{v}) \right]}{\sum_{w=1}^{N} \exp(\mathbf{q}_{u}^{\top} \mathbf{k}_{w})} \cdot \mathbf{v}_{v} \qquad \text{where} \quad \mathbf{q}_{u} = W_{Q}^{(l)} \mathbf{z}_{u}^{(l)}, \quad \mathbf{k}_{u} = W_{K}^{(l)} \mathbf{z}_{u}^{(l)}, \quad \mathbf{v}_{u} = W_{V}^{(l)} \mathbf{z}_{u}^{(l)} \\ \mathbf{z}_{u}^{(l+1)} = \sum_{v=1}^{N} \frac{\left[\kappa(\mathbf{q}_{u}, \mathbf{k}_{v}) \right]}{\sum_{w=1}^{N} \kappa(\mathbf{q}_{u}, \mathbf{k}_{w})} \cdot \mathbf{v}_{v} \qquad \text{where} \quad \kappa(\cdot, \cdot) : \mathbb{R}^{d} \times \mathbb{R}^{d} \to \mathbb{R} \text{ is a positive-definite kernel} \\ \frac{\left[\text{Mercer's theorem} \right]}{\phi(\cdot) : \mathbb{R}^{d} \to \mathbb{R}^{m} \text{ is a random feature map}} \mathbf{z}_{u}^{(l+1)} = \sum_{v=1}^{N} \frac{\phi(\mathbf{q}_{u})^{\top} \phi(\mathbf{k}_{v})}{\sum_{w=1}^{N} \phi(\mathbf{q}_{u})^{\top} \phi(\mathbf{k}_{v})} \cdot \mathbf{v}_{v} = \begin{pmatrix} \phi(\mathbf{q}_{u})^{\top} \sum_{v=1}^{N} \phi(\mathbf{k}_{v}) \cdot \mathbf{v}_{v}^{\top} \\ \phi(\mathbf{q}_{u})^{\top} \sum_{w=1}^{N} \phi(\mathbf{k}_{w}) \end{pmatrix} \\ \frac{\mathbf{two summation are shared by all nodes (independent of u)}{\sum_{w=1}^{N} only compute once} computation complexity O(N) + N \cdot O(1) = O(N) \end{pmatrix}$$

Qitian Wu et al., NodeFormer: A Scalable Graph Structure Learning Transformer for Node Classification, NeurIPS 2022

Qitian Wu et al.

Graph Transformers at Scale

Results on Large-Graph Benchmarks

Results of testing accuracy on two large-scale graph datasets

Models	Proteins	Pokec	
MLP	72.41 ± 0.10	60.15 ± 0.03	
LP	74.73	52.73	
SGC	49.03 ± 0.93	52.03 ± 0.84	
GCN	$74.22 \pm 0.49^{*}$	$62.31 \pm 1.13^{*}$	
GAT	$75.11 \pm 1.45^{*}$	$65.57 \pm 0.34^*$	
NodeFormer	$\textbf{77.45} \pm \textbf{1.15}^*$	$\textbf{68.32} \pm \textbf{0.45}^{*}$	
DIFFORMER-s	$\textbf{79.49} \pm \textbf{0.44}^{*}$	$\textbf{69.24} \pm \textbf{0.76}^{*}$	

Improve accuracy by +5.8% over GNNs

Original Transformers requires 24TB GPU memory

8000x space reduction

DIFFormer (ours) only requires 3GB GPU memory

30x inference time reduction

Qitian Wu et al., DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, ICLR 2023

1/16/2024

Pytorch Implementation

qs: [N, H, D], ks: [L, H, D], vs: [L, H, D]

qs = qs / torch.norm(qs, p=2) # [N, H, D]
ks = ks / torch.norm(ks, p=2) # [L, H, D]
N = qs.shape[0]

numerator

kvs = torch.einsum("lhm,lhd->hmd", ks, vs)
attn_num = torch.einsum("nhm,hmd->nhd", qs, kvs) # [N, H, D]
all_ones = torch.ones([vs.shape[0]])
vs_sum = torch.einsum("l,lhd->hd", all_ones, vs) # [H, D]
attn_num += vs_sum.unsqueeze(0).repeat(vs.shape[0], 1, 1) # [N, H, D]

denominator

all_ones = torch.ones([ks.shape[0]])
ks_sum = torch.einsum("lhm,l->hm", ks, all_ones)
attn_den = torch.einsum("nhm,hm->nh", qs, ks_sum) # [N, H]

attentive aggregated results

attn_den = torch.unsqueeze(attn_den, len(attn_den.shape)) # [N, H, 1] attn_den += torch.ones_like(attn_den) * N z_next = attn_num / attn_den # [N, H, D]

Qitian Wu et al.

Graph Transformers at Scale

Experiment Results

		5		5 1	
Method	ogbn-proteins	Amazon2m	pokec	ogbn-arxiv	ogbn-papers100M
# nodes	132,534	2,449,029	1,632,803	169,343	111,059,956
# edges	39,561,252	61,859,140	30,622,564	1,166,243	1,615,685,872
MLP	72.04 ± 0.48	63.46 ± 0.10	60.15 ± 0.03	55.50 ± 0.23	47.24 ± 0.31
GCN	72.51 ± 0.35	83.90 ± 0.10	62.31 ± 1.13	71.74 ± 0.29	OOM
SGC	70.31 ± 0.23	81.21 ± 0.12	52.03 ± 0.84	67.79 ± 0.27	63.29 ± 0.19
GCN-NSampler	73.51 ± 1.31	83.84 ± 0.42	63.75 ± 0.77	68.50 ± 0.23	62.04 ± 0.27
GAT-NSampler	74.63 ± 1.24	85.17 ± 0.32	62.32 ± 0.65	67.63 ± 0.23	63.47 ± 0.39
SIGN	71.24 ± 0.46	80.98 ± 0.31	68.01 ± 0.25	70.28 ± 0.25	65.11 ± 0.14
NodeFormer	77.45 ± 1.15	87.85 ± 0.24	70.32 ± 0.45	59.90 ± 0.42	
SGFormer	79.53 ± 0.38	89.09 ± 0.10	73.76 ± 0.24	72.63 ± 0.13	66.01 ± 0.37

Results on large node classification graphs

SGFormer can be trained in full-graph manner on obgn-arxiv

Mini-batch training for proteins, Amazon2M, pokec with batch size 10K/100K

For Papers100M, using batch size 0.4M only requires 3.5 hours on a 24GB GPU

Qitian Wu et al., Simplifying and Empowering Transformers for Large-Graph Representations, NeurIPS 2023

Qitian Wu et al.

More Application Scenarios

Diffusivity estimates of DIFFormer-s

Scenario 1: predicting spatial-temporal dynamics with interpretable latent structures

Diffusivity estimates of DIFFormer-a

Scenario 2: handling tasks with latent structures in broad areas (particle physics, biochemistry, etc.)

Towards Open-World Learning

1/16/2024

Open research question:

Q1: How powerful are existing models for generalization tasks?

Q2: How to design provably effective generalization approach?

Out-of-Distribution Data from Open World

Graph data from multiple domains

Dynamic temporal networks

□ Distribution shifts cause different data distributions $P_{train}(\mathcal{D}) \neq P_{test}(\mathcal{D})$ □ New data from unknown distribution are unseen by training

Generalization is impossible w/o any assumption (no free-lunch theorem)

Theoretical Motivation

Proposition 1 (Failure of Empirical Risk Minimization)

Let the risk under environment e be $R(e) = \frac{1}{|V|} \sum_{v \in V} \mathbb{E}_{\mathbf{y}|\mathbf{G}_{\mathbf{v}}=G_{v}}[\|\hat{y}_{v} - y_{v}\|_{2}^{2}].$ The unique optimal solution for objective $\min_{\theta} \mathbb{E}_{\mathbf{e}}[R(e)]$ would be $[\theta_{1}, \theta_{2}] = [\frac{1 + \sigma_{e}^{2}}{2 + \sigma_{e}^{2}}, \frac{1}{2 + \sigma_{e}^{2}}]$ where $\sigma_{e} > 0$ denotes the standard deviation of ϵ across environments.

Proposition 2 (Success of Risk Variance Minimization)

The objective $\min_{\rho} \mathbb{V}_e[R(e)]$ reaches the optimum if and only if $[\theta_1, \theta_2] = [1, 0]$

1/16/2024

Causal Invariance Principle

There exists a portion of causal information within input ego-graph for prediction task of each individual node

The "causal" means two-fold properties:1) invariant across environments2) sufficient for prediction

causal features

non-causal features

Bernhard Sch"olkopf, et al., "Invariant models for causal transfer learning".

Theorem 1 (Guarantee of Valid OOD solution)

Under causal assumptions, if the GNN encoder $q(\mathbf{z}|\mathbf{G}_{\mathbf{v}})$ satisfies that 1) $I(\mathbf{y}; \mathbf{e}|\mathbf{z}) = 0$ (invariance condition) and 2) $I(\mathbf{y}; \mathbf{z})$ is maximized (sufficiency condition), then the model f^* given by $\mathbb{E}_{\mathbf{y}}[\mathbf{y}|\mathbf{z}]$ is the solution to the formulated OOD problem.

Qitian Wu, et al., "Handling Distribution Shifts on Graphs: An Invariance Perspective", in ICLR'22

Explore-to-Extrapolate Risk Minimization

$$\begin{array}{l} \text{Risk} \\ \text{Extrapolation} \end{array} & \longrightarrow \min_{\theta} \operatorname{Var}(\{L(g_{w_{k}^{*}}(G), Y; \theta) : 1 \leq k \leq K\}) + \frac{\beta}{K} \sum_{k=1}^{K} L(g_{w_{k}^{*}}(G), Y; \theta) \\ \text{Environment} \\ \text{Exploration} \end{array} & \text{s. t. } [w_{1}^{*}, \cdots, w_{K}^{*}] = \arg \max_{w_{1}, \cdots, w_{K}} \operatorname{Var}(\{L(g_{w_{k}}(G), Y; \theta) : 1 \leq k \leq K\}) \\ \text{context generator} \end{array}$$

□ Model instantiations:

- $f_{ heta}(\cdot)$: GNN (output node-level prediction)
- $g_{w_{h}^{*}}(\cdot)$: Graph Editer (modify graph structures)
- Training: *REINFORCE* + *Gradient Descent*

Qitian Wu, et al., "Handling Distribution Shifts on Graphs: An Invariance Perspective", in ICLR'22

1/16/2024

Experiment on Cross-Graph Transfer

EERM achieves up to 7.0% (resp. 7.2%) impv. on ROC-AUC (resp. accuracy) than ERM

Qitian Wu, et al., "Handling Distribution Shifts on Graphs: An Invariance Perspective", in ICLR'22

Experiment on Temporal Graph Evoluation

EERM achieves up to 9.6%/10.0% impv using GraphSAGE/GPR-GNN as backbones

Qitian Wu, et al., "Handling Distribution Shifts on Graphs: An Invariance Perspective", in ICLR'22

1/16/2024

Applications for Recommender Systems

Observation:

There exists latent context (from external effects) that spuriously correlates user clicking behaviors

Key insights:

Learning invariant user interests that causally relate to the clicking behaviors

$$\mathbb{E}_{c \sim Q(C|S=S)} \left[\log P_{\theta}(Y|S=S, C=c) \right] - \mathcal{D}_{KL} \left(Q(C|S=S) \| P(C) \right)$$

Qitian Wu, et al., "Towards Out-of-Distribution Sequential Event Prediction: A Causal Treatment", in NeurIPS'22

1/16/2024

Applications for Molecular Analysis

Observation:

There exist certain priviledged substructures that causally relate to the target property

Key insights:

Learning molecular substructures that induce invariant predictive relations with the labels

+ 5.9% and + 3.9%

improvement over the strongest baselines on OGB-Mole and DrugOOD

Qitian Wu, et al., "Learning Substructure Invariance for Out-of-Distribution Molecular Representations", in NeurIPS'22

1/16/2024

Conclusions

The Open Challenge of Learning with Non-IID Data

Closed-world: representation

Diffusion-inspired graph Transformers [ICLR'23]

Linearly complex global attention [NeurIPS'22]

Simplifying Global Transformers [NeurIPS'23]

Universal structure learning [KDD'23]

Open-world: generalization

Learning with distribution shifts [ICLR'22]

Feature space extrapolation [NeurIPS'21]

Invariant substructure learning [NeurIPS'22]

Theoretical understandings of generalization [ICLR'23]

[1] Qitian Wu, et al., DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, in ICLR'23 (spotlight oral)

[2] Qitian Wu, et al., NodeFormer: A Scalable Graph Structure Learning Transformer for Node Classification, in NeurIPS'22 (spotlight)

[3] Qitian Wu, et al., Simplifying and Empowering Transformers for Large-Graph Representations, in NeurIPS'23

[4] Qitian Wu, et al., Handling Distribution Shifts on Graphs: An Invariance Perspective, in ICLR'22

[5] Qitian Wu, et al., Energy-based Out-of-Distribution Detection for Graph Neural Networks, in ICLR'23

[6] Qitian Wu, et al., Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach, in NeurIPS'21

[7] Nianzu Yang, Qitian Wu, et al., Learning Substructure Invariance for Out-of-Distribution Molecular Representations, in NeurIPS'22 (spotlight)

[8] Chenxiao Yang, Qltian Wu, et al., Graph Neural Networks are Inherently Good Generalizers: Insights by Bridging GNNs and MLPs, in ICLR'23

[9] Wentao Zhao, Qitian Wu, et al., GraphGLOW: Universal and Generalizable Structure Learning for Graph Neural Networks, in SIGKDD'23 (oral)

DIFFormer: Instantiations of Diffusivity

DIFFormer layer with simple diffusivity (DIFFormer-s):

$$\omega_{ij}^{(k)} = f(\|\tilde{\mathbf{z}}_{i}^{(k)} - \tilde{\mathbf{z}}_{j}^{(k)}\|_{2}^{2}) = 1 + \left(\frac{\mathbf{z}_{i}^{(k)}}{\|\mathbf{z}_{i}^{(k)}\|_{2}}\right)^{\top} \left(\frac{\mathbf{z}_{j}^{(k)}}{\|\mathbf{z}_{j}^{(k)}\|_{2}}\right)$$
$$\sum_{j=1}^{N} \mathbf{S}_{ij}^{(k)} \mathbf{z}_{j}^{(k)} = \sum_{j=1}^{N} \frac{1 + (\tilde{\mathbf{z}}_{i}^{(k)})^{\top} \tilde{\mathbf{z}}_{j}^{(k)}}{\sum_{l=1}^{N} \left(1 + (\tilde{\mathbf{z}}_{i}^{(k)})^{\top} \tilde{\mathbf{z}}_{l}^{(k)}\right)} \mathbf{z}_{j}^{(k)}$$

DIFFormer layer with advanced diffusivity (DIFFormer-a):

$$\omega_{ij}^{(k)} = f(\|\tilde{\mathbf{z}}_{i}^{(k)} - \tilde{\mathbf{z}}_{j}^{(k)}\|_{2}^{2}) = \frac{1}{1 + \exp\left(-(\mathbf{z}_{i}^{(k)})^{\top}(\mathbf{z}_{j}^{(k)})\right)}$$
$$\sum_{j=1}^{N} \mathbf{S}_{ij}^{(k)} \mathbf{z}_{j}^{(k)} = \sum_{j=1}^{N} \frac{\operatorname{sigmoid}\left((\mathbf{z}_{i}^{(k)})^{\top} \mathbf{z}_{j}^{(k)}\right)}{\sum_{l=1}^{N} \operatorname{sigmoid}\left((\mathbf{z}_{i}^{(k)})^{\top} \mathbf{z}_{l}^{(k)}\right)} \mathbf{z}_{j}^{(k)}$$

1/16/2024

DIFFormer: Extension to a Transformer Layer

Incorporation of input graphs (if available): add graph convolution with global attention

$$\overline{\mathbf{P}}^{(k)} = \frac{1}{2} \left(\mathbf{\hat{S}}^{(k)} + \tilde{\mathbf{A}} \right) \mathbf{Z}^{(k)}$$

DIFFormer layer for updating embedding of the next layer:

$$\mathbf{Z}^{(k+1)} = \sigma' \left(\text{LayerNorm} \left(\tau \overline{\mathbf{P}}^{(k)} + (1-\tau) \mathbf{Z}^{(k)} \right) \right)$$

DIFFormer: Scaling to Large-Scale Datasets

Large-scale datasets with massive amount of data, e.g., N instances (N can be arbitrarily large)

Traditional IID learning enables mini-batch learning with a moderate batch size B << N

How can message passing networks handle large-scale graphs?

Existing solutions: 1. neighbor sampling (slow training and limited receptive field)

2. graph clustering (time-consuming pre-processing and limited receptive field)

1/16/2024

□ Graph notation: A graph G = (A, X), adjacency matrix $A = \{a_{uv} | v, u \in V\}$ node features $X = \{x_v | v \in V\}$, node labels $Y = \{y_v | v \in V\}$ $p(\mathbf{G}, \mathbf{Y} | \mathbf{e}) = p(\mathbf{G} | \mathbf{e}) p(\mathbf{Y} | \mathbf{G}, \mathbf{e})$

where e denotes environment (that affects data generation)

□ How to deal with the non-IID nature of nodes in a graph?

 \Box Graph notation: A graph G = (A, X), adjacency matrix $A = \{a_{uv} | v, u \in V\}$ node features $X = \{x_v | v \in V\}$, node labels $Y = \{y_v | v \in V\}$

 $p(\mathbf{G}, \mathbf{Y}|\mathbf{e}) = p(\mathbf{G}|\mathbf{e})p(\mathbf{Y}|\mathbf{G}, \mathbf{e})$

where e denotes environment (that affects data generation)

sample node-level label conditioned **Out-of-distribution generalization on graphs**: on ego-graph and environment a specific environment learn a classifier $\blacksquare f_{e \in \mathcal{E}} \mathbb{E}_{G \sim p(\mathbf{G}|\mathbf{e}=e)} \left[\frac{1}{|V|} \sum_{v \in V} \mathbb{E}_{y \sim p(\mathbf{y}|\mathbf{G}_{\mathbf{v}}=G_v,\mathbf{e}=e)} [l(f(G_v),y)] \right]$ loss function for robust for worst case node-level prediction

- A graph G can be divided into pieces of ego-graphs $\{(G_v, y_v)\}_{v \in V}$
- The data generation process: 1) the entire graph is generated via $G \sim p(\mathbf{G}|\mathbf{e})$, 2) each node's label is generated via $y \sim p(\mathbf{y}|\mathbf{G}_{\mathbf{v}} = G_v, \mathbf{e})$
- Denote \mathcal{E} as the support of env. and $l(\cdot, \cdot)$ as the loss function