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Data with Observed Geometry (Graphs)

Q Graph-structured data are ubiquitous in various domains

molecular social network knowledge graph
o= .-"
| i I : I:l: JP J 2 Museum -

a How to leverage the relational information of inter-dependent data?

Challenge: 1) Arbitrary size and geometric symmetry
2) Complex topological structure
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Data with Unobserved Geometry

a Real-world data generation involves hidden interactions

« v
. e}
¢ ¢ Qxi — o V?
¢ ¢ ¢ ¢

«
Observed data lies on low- Physical interactions affect data Complex hidden structures
dimensional manifold generation yet are not observed in scientific applications
[Sebastian et al., 2021] [Alvaro et al., 2020] [Xu et al., 2020]

a How to learn and leverage latent structures from observed data?

Challenge: 1) Combinatorial searching space
2) Scalability for large-scale systems
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Learning under Closed-World Assumptions

model performance
|

[ 1

D(pg(x, y)vpte(xa ’,Q/)) <
Dl (pe(aﬁ, y)vptr(x7 y)) + DQ(ptr(.I, y),pm(,jj’ y))

l ) \ J

[ [

fitting error generalization gap
model expressivify negligibly small
matters!

g Open research question:

Q1: What is the underlying mechanism
of existing models (e.g., GNNs) ?

o Q2: Is there any principled guideline for
Input graph 2D node embeddings N designing new models?

J
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GNN Feed-forward as Diffusion Process

_________________________________________________________

I T ] instance embedding

prediction

—| (> embedding update

Q’O i ! downstream O heat signal
|

at the feed-forward update of embeddings as i
diffusion process of heat on locations O heat flux

, pairwise message
€ ’ passing

!

O---0O information flow

Qitian Wu et al., DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, ICLR 2023
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General Formulation of Diffusion Process

The diffusion process of N particles driven by initial states and pairwise interactions:

ag—f) =V (S(Z(t), ) © VZ(t)), s t. Z(0) = [x;]¥,, t>0
- i i @l Y N - I
. 0 (i
gradient divergence diffusivity function
(VZ(t)i; = 2;(t) — zi(t) (V)i = > Si(Z(1), 1) (VZ(®)),, S(Z(t),t) : RV*4 x [0,00) — [0,1]V*N

Diffusion over discrete space composed of N instances with latent structures:

Pl S S (20 1) (2 (1) — (1)

Qitian Wu et al., DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, ICLR 2023
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Diffusion with Latent Structures

The iterative dynamics (by explicit scheme) of diffusion induce feed-forward layers:

2D ( TZS(k)) <k>+725<k> (k)

The N x N diffusivity S**) is a measure of the rate at which the node signals spread
= S js an identity matrix: message passing only through self-loops
= S® only has non-zero values for observed edges: message passing over a graph

= S) can have non-zero values for all entries: all-pair message passing

Key question: How to determine a
proper diffusivity function for learning
desirable node representations?

MLP GNN Transformer

1/16/2024 Learning with Non-IID Data 7



Energy-Constrained Diffusion Process

(Principle 1: particle
states evolution
described by a

kdiffusion process

Supervised Loss

M
BT = Y U Vo
m=1
A AA

| " Classifier ]
+ i T | e i

[ Principle 2: the g B T¥y e o

evolutionary directions m : | I I H - T77Y

I Observ

tzwa:dz cllescendlng peervedate Energy Constraint E(z,t;4) = |Z4Z(t)|§r+/\z):6(\]zi — ;2)
| the global energy ) - - - N

Key insight: treat diffusivity as zgk_H) —|1-=7 Z SE;?) ng) + T Z ng)z§k)

latent variables whose optimality =i =

is given by descent criteria w.r.t. 0

a principled global energy stz =%, BEZ k0) < BEZ®E-1;6), k=1

Qitian Wu et al., DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, ICLR 2023
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Diffusion Equation v.s. Energy Minimization

e
[

The diffusion equation of node embeddings Z = {z;};., with fixed diffusivity matrix

azl Z Sij(z;(t i(t))+8h;  where S={si}nxn
JjeEV
induces dynamlcs |mpl|ctly minimizing a global energy function

E(Z,t) = |Z = Z(t) = nH| %+ A Y sijllz — 713
i

——————————————————————————————————————

Graph Convolution Networks (k+1) _ (k) 1 (%) -1 1
[Kipf and Welling, 2017] zi =Tz T ad, S=DAD
Graph /7;272;’,57/52/707/5\?/]91‘W01‘k5 zng) = (1 +7)z§k) i Z ng) S— AT
v JEN (3)
PageRank Propagation Networks (k+1) _ 1 () L ) (0) R Ry
[Klicpera et al., 2019] zi =Tz T2 Jaa T S=D :AD

Qitian Wu et al., DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, ICLR 2023
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Closed-Form Solutions for Diffusion Dynamics

 Theorem 2 (Optimal diffusivity estimates for diffusion with time-dependent diffusivity)

For any regularized energy over Z = {z;}2_, defined by the form
E(Z,k;0) = 1Z = ZP |7+ 1) (/|2 — zl13)

1]
where 6 : RT™ — R is a concave, non-decreasing function, the diffusion process with diffusivity
(k)
§W _ _Yu o 99(z7)
NPT Y02 e s

yields a descent step on the energy, i.e., E(Z*Y k:6) < B(ZW, k — 1;96) '

k k
F(llz™ —2)13)
k k:
S £l >—zl 12)

State Update: z/**" = ( ZS(’“)> k) 4 7 ZS("’) W 1<i<N

Diffusivity Inference: S = 1<i,j<N

One-layer update
of DIFFormer

Qitian Wu et al., DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, ICLR 2023
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Interpretations of MLP/GNNSs as Diffusion

Energy function Diffusivity [llustration
1, ifi=j
_ g (k)2 gk _ )b J
MLP 1Z =23 v {0, otherwise
(1 if (i,5) € €
2 , 1 (2,
1 4gll2 S = iaj
GCN >z — 1z B _ )i, /
(e,5)€E L0, otherwise
( k) (k)2
f(lz" = 27)3) -
o(||z; — z; 2 (k) L Lk ) lf(rL?j)eg
GAT (1;65 (H { JH2) Sz‘j — Zl:(i,l)eé’ f(HZE )_zl( )H%)
’ |0, otherwise
(k)12 o | wwy £ =273 -
DIFFormer | [Z —Z™ |3+ 1) 6(lz: —23) | s = SN (2™ — 2Py b=ty N
i,j I=1 i 112

Qitian Wu et al., DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, ICLR 2023
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Scalable All-Pair Message Passing with O(N)

a Kernelized softmax message passing

L0+D) _ i | exp(q, k) |

[ l l
Lo where = W) k= W v, =
v=1 w=1 u W

N
2t =)~ [N’{(q“’k“)] Vy where &(-,-) :R¥xR? — R is a positive-definite kernel
=1 2w=1 R (du, Kw)

[Mercer's theorenl k(a,b) = (®(a),®(b))y ~ ¢(a)' ¢(b)
i

#(-) : R* — R™ ig a random feature map

N
20+ —

' ; S () To(ky)

A 4
[(B(an)Tot) | _[é(an)T X0, dk) vy

" () TSN plka)

—— only compute once :
computation complexity O(N)+ N -O(1) = O(N) L Q

________________________________________________

Qitian Wu et al., NodeFormer: A Scalable Graph Structure Learning Transformer for Node Classification, NeurlPS 2022
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Results on Large-Graph Benchmarks

Results of testing accuracy on two
large-scale graph datasets

Models | Proteins Pokec
MLP 72.41 £ 0.10 60.15 £ 0.03

LP 74.73 52.73
SGC 49.03 093 52.03 +£ 0.84
GCN 7422 + 0.49* 62.31 +1.13*
GAT 75.11 £ 1.45* 65.57 £0.34*
NodeFormer 7745 = 1.15* 68.32 &+ 0.45
DIFFORMER-s | 7949 + 0.44* 69.24 - 0.76

Improve accuracy by
+5.8% over GNNs

Original Transformers requires 24TB GPU memory

8000x space reduction

DIFFormer (ours) only requires 3GB GPU memory

== DIFFormer NodeFormer == ANS-GT
Training time GPU memory cost
—~ 1500 m 125
w
21008
£ 1000 >
p £ 75
E 500 £ 50
— 2.5 e
0 i = —

2 4 6 8 10
# nodes (10%) # nodes (10%)

30x inference time reduction

Qitian Wu et al., DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, ICLR 2023
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Pytorch Implementation

# gs: [N, H, D], ks: [L, H, D], vs: [L, H, D] glfhub repo

gs = qs / torch.norm(gs, p=2) # [N, H, D] @: @

ks ks / torch.norm(ks, p=2) # [L, H, D]
N = gs.shape[0]

# numerator

kvs = torch.einsum("1lhm,lhd->hmd", ks, vs)

attn_num = torch.einsum('"nhm,hmd->nhd", gs, kvs) # [N, H, D]

all_ones torch.ones([vs.shape[0]])

vs_sum = torch.einsum("1,lhd->hd", all_ones, vs) # [H, D]

attn_num += vs_sum.unsqueeze(0) .repeat(vs.shape[0], 1, 1) # [N, H, D]

# denominator

all_ones = torch.ones([ks.shape[0]])

ks_sum = torch.einsum("lhm,1l->hm", ks, all_ones)

attn_den = torch.einsum("nhm,hm->nh", qs, ks_sum) # [N, H]

# attentive aggregated results

attn_den = torch.unsqueeze(attn_den, len(attn_den.shape)) # [N, H, 1]
attn_den += torch.ones_like(attn_den) * N

z_next = attn_num / attn_den # [N, H, D]

Qitian Wu et al. Graph Transformers at Scale 14



Experiment Results

Results on large node classification graphs

Method ogbn-proteins | Amazon2m pokec ogbn-arxiv | ogbn-papers100M
# nodes 132,534 2,449,029 1,632,803 169,343 111,059,956
# edges 39,561,252 61,859,140 30,622,564 1,166,243 1,615,685,872
MLP 72.04 £0.48 | 63.46+0.10 | 60.15+0.03 | 55.50+0.23 47.24 £ 0.31
GCN 7251 +£0.35 | 8390+£0.10 | 62.31+1.13 | 71.74 £ 0.29 OOM
SGC 70.31 £0.23 | 81.21+£0.12 | 52.03 £0.84 | 67.79 £ 0.27 63.29 £ 0.19
GCN-NSampler | 73.51 £ 1.31 | 83.84+0.42 | 63.75+0.77 | 68.50 +£0.23 62.04 +0.27
GAT-NSampler 74.63 £1.24 | 85.17+0.32 | 62.32+0.65 | 67.63 £0.23 63.47 £ 0.39
SIGN 7124 +£0.46 | 8098 £0.31 | 68.01 £0.25 | 70.28 £0.25 65.11 + 0.14
NodeFormer 7745 +1.15 | 87.85+0.24 | 70.32 £ 0.45 | 59.90 + 0.42 -
SGFormer 79.53+0.38 | 89.09+£0.10 | 73.76 £ 0.24 | 72.63 £ 0.13 66.01 + 0.37

SGFormer can be trained in full-graph manner on obgn-arxiv
Mini-batch training for proteins, Amazon2M, pokec with batch size 10K/100K
For Papers100M, using batch size 0.4M only requires 3.5 hours on a 24GB GPU

Qitian Wu et al., Simplifying and Empowering Transformers for Large-Graph Representations, NeurlPS 2023
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More Application Scenarios

Scenario 1: predicting spatial-temporal dynamics with interpretable latent structures

Diffusivily estimates of DIFFormer-s

Unbranched
Alkane

Scenario 2: handling tasks
with latent structures in .
broad areas (particle 85
physics, biochemistry, etc.)

é y - ~' AT
T % A
/7 \ Carbonvl

1/16/2024 Learning with Non-IID Data 16



Towards Open-World Learning

e’ it model petiformance
po(T,y) 'D(pe(x, Y), Pte(, ’y))‘ <
D1 (po (. ), p1r (2,9)) + Dalpre (2,9). v (.1)
| I - I '
fitting error generalization gap
ACNY) can be

foo small to be good \ ;
arbitrarily large!
extrapolation tasks ly larg

g Open research question:

Q1: How powerful are existing models
for generalization tasks?

Q2: How to design provably effective
L generalization approach?

Input graph 2D node embeddings
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Out-of-Distribution Data from Open World

% ¢ £ Tt
; \ 2. o’ 60° o o™
I*\R \i\\;\ % N'E"J e W NO'D ¢ gD“‘g
| \ ek N I .
| NA I-'I f S /XQ |
I \ 'If @ /?ff " I
I ) b 2 By ~

' :

______ % & t t ty
item Juser  — social link .-+ interest
Graph data from multiple domains Dynamic temporal networks

a Distribution shifts cause different data distributions Pyqin (D) # Piesi (D)
0 New data from unknown distribution are unseen by training

Generalization is impossible w/o any assumption (no free-lunch theorem)

1/16/2024 Learning with Non-IID Data 18



Theoretical Motivation

1
@ueN,, node features T, = [z, z°

x1 publish avenue '; . A~
. F—— predictive model ¥, = \N ‘ Z '+ 9233

| y :paper's sub-area |

causal features

e :time of publication ideal solutions [91, 02] [

......................................

Let the risk under environment € be R(e) = v |ZEy|G —cu lGo — yoll3]-

veV 2
The unique optimal solution for objective min Ee [R(e)] would be [6;,0-] = Lro.

= | 5 -] where
T _ 2o 2+ -
o. > 0 denotes the standard deviation of € across environments.

The objective mein V.[R(e)] reaches the optimum if and only if [01, 65] = [1,0]

1/16/2024 Learning with Non-IID Data 19



Causal Invariance Principle

There exists a portion of causal
information within input ego-graph for
prediction task of each individual node

D DD causalfeatures

(] non-causal features

Bernhard Sch'olkopf, et al., “Invariant models for causal transfer learning”.

Under causal assumptions, if the GNN encoder ¢(z|G+) satisfies that 1) I(y;e|z) = 0 (invariance
condition) and 2) ] (y; z) is maximized (sufficiency condition), then the model {* given by E [y|z]
is the solution to the formulated OOD problem.

B —— S —

Qitian Wu, et al., “Handling Distribution Shifts on Graphs: An Invariance Perspective”, in ICLR'22
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Explore-to-Extrapolate Risk Minimization

Risk | . 8 |
Extrapolation =) min Var({L(gu; (G), Y30) : L < k< K}) + - 1; L(guw; (G), Y 0)

Exploration P 5 b [wf - wid = arg max Var({Z{gu,(G)]Y:6):1 <k < K)

context generator

Context G lY
0 Model instantiations: Generator 1 ﬁ%g;%} _
= L(GK$Y)
- fo(-) : GNN (output node-level prediction) ['"'E’éf??ta | Generator2
* Gur () : Graph Editer (modify graph structures) Sr— —
Generator K K ;L(G’” e
- Training: RE/INFORCE + Gradient Descent - A :
xpfore I s et Extrapo!ate
—p Forward Data Flow === » REINFORCE Update  :---- » Gradient Update

Qitian Wu, et al., “Handling Distribution Shifts on Graphs: An Invariance Perspective”, in ICLR'22
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Experiment on Cross-Graph Transfer

training data model J testing data
oo unseen
grap _ raph
N . different = _____1 - grap
N = domains ~ =
mm ERM 65 mmm ERM mm ERM
%55 I I s EERM % & II = EERM %Ea II I = EERM
P 355 §
I I B ll i II II m II I _—
FTER PTER PTER RU ™
(a) GCN (b) GAT (c) GCNII

EERM achieves up to 7.0% (resp. 7.2%) impv. on ROC-AUC (resp. accuracy) than ERM

Qitian Wu, et al., “Handling Distribution Shifts on Graphs: An Invariance Perspective”, in ICLR'22
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Experiment on Temporal Graph Evoluation

training data testing data

graph graph graph i graph
snapshot 1 snapshot 1 snapshotM | ! snapshot K
[ model
Method | 2014-2016 2016-2018 2018-2020

=]
=

ErRM- SAGE | 4209+ 139 3992+253 36.72+2.47
EERM- SAGE | 4155+ 0.68 @ 4036+ 1.29 3895+ 1.57

F1 Score
Z

£n
=]

ERM- GPR 47254+ 055 4507057 41.53+£0.56

TT T2 T3 T4 T5 T6 T7 T8 T9 TI T2 T3 T4 T5 T6 T7 T8 T9

EERM achieves up to 9.6%/10.0% impv using GraphSAGE/GPR-GNN as backbones

Qitian Wu, et al., “Handling Distribution Shifts on Graphs: An Invariance Perspective”, in ICLR'22
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Applications for Recommender Systems

___________________________________________

Train Test

There exists latent context (from [ — Time Cine
external effects) that spuriousty NG I s
. . . i Past Events rFuture Event = \PastEvents . | Prediction '
correlates user clicking behaviors = < E —
.é | - .. : .ﬁ? : % .
I R —] == ) — S | W e [
Key |n$|ghtS: [ Causahty4$ I I Causahty_4
Learning invariant user interests that
causally relate to the clicking behaviors Ecvq(cis=s) log Po(Y[S = S8,C = ¢)] — Dk (Q(C|S = S)| P(C))
0.32
Alleviate drop on =02
o,
NDCG by 47.777% S o]
Hit Ratio by 35'73% zz; e 'll_'rsa-I::former —— g}z‘zlg(oirs)
(a) Real-world data (b) Traditional model  (c) Our interventional ' ; - - ‘ - —
generation P(Y|S5) Py(Y|S) model Py(Y|do(S)) 0 10 é)ap SI'BZOE 40 >0

Qitian Wu, et al., “Towards Out-of-Distribution Sequential Event Prediction: A Causal Treatment”, in NeurlPS'22
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Applications for Molecular Analysis

Scaffold 11 Scaffold 32 Scaffold 321 Scaffold 4413

?t?sewat'iotn: rtain priviledged substruct i N NI
ere exist certain priviledged substructures \}‘Q - oY ¢
that causally relate to the target property X -¢ Q fi W o

(1,0,7,0,7,.)11((?,0,0,0,7,..)|1(0,1,1,0,0,..) | [ (?,0,0,0,?,..)

Key insights: V! ot »
Learning molecular substructures that induce m ”“ [;}v“‘i D O_(’?Q

invariant predictive relations with the labels (?,0,0,0,2,.))(?,0,2,1,0,.) ) (?,0,0,0,1,.)) {(1,1,0,1,0,..)
e o g i
@) DFT \| Targets
[ T o eo ~ 103 ds |E.wo, ...
+ 5.9% and + 3.9% JAN SRS
improvement Over the 3 Message Passing Neural Net
: AR Nt L N N
strongest baselines on | i PO O O
OGB-Mole and DrugO0D —if. o EEmmn; .-
(b) Molecular Representation Learning o 10 SeCOIldS

Qitian Wu, et al., “Learning Substructure Invariance for Out-of-Distribution Molecular Representations”, in NeurlPS'22
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Conclusions

The Open Challenge of Learning with Non-|ID Data

|\

Closed-world: representation

~

J

s

G

Diffusion-inspired graph Transformers [ICLR'23]
Linearly complex global attention [NeurlPS'22]
Simplifying Global Transformers [NeurlPS'23]

Universal structure learning [KDD'23]

~

[1] Qitian Wu,
[2] Qitian Wu,
[3] Qitian Wu,
[4] Qitian Wu,
[5] Qitian Wu,
[6] Qitian Wu,

1/16/2024

et al.,
et al.,
et al.,
et al.,
et al.,
etal,

DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion, in ICLR'23 (spotlight oral)
NodeFormer: A Scalable Graph Structure Learning Transformer for Node Classification, in NeurlPS'22 (spotlight)

e

.

Open-world: generalization

J

s

o

Learning with distribution shifts [ICLR'22]

Feature space extrapolation [NeurlPS'21]

Invariant substructure learning [NeurlPS'22]

Theoretical understandings of generalization [ICLR'23]

~

/

Simplifying and Empowering Transformers for Large-Graph Representations, in NeurlPS'23
Handling Distribution Shifts on Graphs: An Invariance Perspective, in ICLR'22

Energy-based Out-of-Distribution Detection for Graph Neural Networks, in ICLR'23

Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach, in NeurlPS'21
[7] Nianzu Yang, Qitian Wu, et al., Learning Substructure Invariance for Out-of-Distribution Molecular Representations, in NeurlPS'22 (spotlight)
[8] Chenxiao Yang, Qltian Wu, et al., Graph Neural Networks are Inherently Good Generalizers: Insights by Bridging GNNs and MLPs, in ICLR'23
[9] Wentao Zhao, Qitian Wu, et al., GraphGLOW: Universal and Generalizable Structure Learning for Graph Neural Networks, in SIGKDD'23 (oral)
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DIFFormer: Instantiations of Diffusivity

DIFFormer layer with simple diffusivity (DIFFormer-s):

k) \ | (k) L () BT
RCIP ORI CIENPIN G S B (i S QY pom
o Y 120 =) ]
0w w2
N (k)T 5 (k) z Wi B nom 7
(90) _ 1+(z7) 2 (k)
ZS S N N A I S -
S (e TEY) Hw (v complexity ;o)
"""" bottleneck
DIFFormer layer with advanced diffusivity (DIFFormer-a): et
______ COMPEXY o2 4+ Na?)
1 T bottleneck
5 =" -5 = AWEPON, o
G = AT ) = (K0T (%) 2
1+ exp (—(zi ) (zj )>
7®) _R;;,_(_k_)_:_)
N N sigmoid ((zgk))Tz§k)) UK 5
> SHEPIGIE > 20| /
j=1 =1 1Ly sigmoid ((Z@(k))TZz(k)) L w® by
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DIFFormer: Extension to a Transformer Layer

Incorporation of input graphs (if available): add graph convolution with global attention
™ _ L gw L A\ z®
P = 2 (8% + A)Z
DIFFormer layer for updating embedding of the next layer:
7D = o (LayerNorm (T?(k) + (1 — T)Z(k)))

dhput The k-th layer of DIFFormer Output
T | Global | !
: 1 Attention i
(x> - o>
GCN Conv
can be specified as DIFFormer-s
' or DIFFormer-a attention
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DIFFormer: Scaling to Large-Scale Datasets

Large-scale datasets with massive amount of data, e.g., N instances (N can be arbitrarily large)

Traditional |ID learning enables mini-batch learning with a moderate batch size B << N

How can message passing networks handle large-scale graphs?

Existing solutions: 1. neighbor sampling (slow training and limited receptive field)
2. graph clustering (time-consuming pre-processing and limited receptive field)

Our solution: partition instances into random mini-batches with a large batch size B

random input Output mini-batch
mini-batch mini-batch The k-th layer of DIFFormer for loss compute
Henml - PR :
I:i;-l : '\ Global ! :
Input SN TTTTTTTTTTTTT L P ! \ i Attention ! ! | over TR, ! '
npu : SN P | : i Layer : . Non-linear . ) 5
------------- i N :: AL S SN  Norm ! ):Activation:_)m_:_)
;i GEA ; ieoNConvii '
R e : | R The advantage of DIFFormer:
N fpgmmoesenit 5 B less/no reliance on input graphs
G enables large batch size
'{ _____________ ! . 1
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Problem Formulation

a Graph notation: Agraph G = (A4, X), adjacency matrix A = {a,,|v,u € V}
node features X = {z,|v € V'}, node labels Y = {y,|v € V'}

p(G,Yle) = p(Gle)p(Y|G,e)
where e denotes environment (that affects data generation)
a How to deal with the non- IID nature of nodes in a graph?

()

= 10avi

p(?(g)p(l’\ﬁ) g/g) 'ya@; 'ya\c/g yc\(!/ yd\(g

Gle)- (Y|G (Gle) - G, =G, e Decompose a graph into pieces
p(Gle)- (Y|G,e) p(Gle) ﬂl;p(y\ )  Opcomposea
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Problem Formulation

a Graph notation: Agraph G = (A4, X), adjacency matrix A = {a,,|v,u € V}
node features X = {z,|v € V'}, node labels Y = {y,|v € V'}
p(G,Yle) = p(Gle)p(Y|G,e)
where e denotes environment (that affects data generation)
f dIStl’Lbfutlon generallzatlon on graphs:

samppe ole grap
a specific environm: Mg
learn a classifier im}n %ggF“GfVP(GIe#) \V\ Z Eyply|Gu=G.,e=e)[[(f(Gv),Y)]
robust for worst cas veV
» A graph G can be divided into pieces of ego-graphs { (G, Yv) fvev
« The data generation process: 1) the entire graph is generated via G ~ p(G|e),
2) each node's label is generated viay ~ p(y|Gv = G, e)
 Denote £ as the support of env. and [(-, ) as the loss function
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